derivative y=cos^{-1}(1/x)
|
derivative\:y=\cos^{-1}(\frac{1}{x})
|
直线(-6,0),(0,1)
|
直线(-6,0),(0,1)
|
derivative f(x)=sin(3x)
|
derivative\:f(x)=\sin(3x)
|
斜率 y=-1/2 x-4
|
斜率\:y=-\frac{1}{2}x-4
|
斜率 2x-5y=9
|
斜率\:2x-5y=9
|
polar(-2,2)
|
polar(-2,2)
|
polar(-3,3)
|
polar(-3,3)
|
斜率intercept 13x-11y=-12
|
斜率intercept\:13x-11y=-12
|
derivative x^2e^{-3x}
|
derivative\:x^{2}e^{-3x}
|
derivative 4-x^2
|
derivative\:4-x^{2}
|
derivative 1-x
|
derivative\:1-x
|
积分 x^4
|
积分\:x^{4}
|
polar(4,4)
|
polar(4,4)
|
derivative f(x)=ax^2+bx+c
|
derivative\:f(x)=ax^{2}+bx+c
|
derivative f(x)=7
|
derivative\:f(x)=7
|
中点(8,-10)(-10,-8)
|
中点(8,-10)(-10,-8)
|
tangent f(x)=e^{-x}ln(x),\at x=1
|
tangent\:f(x)=e^{-x}\ln(x),\at\:x=1
|
斜率 x=-2
|
斜率\:x=-2
|
derivative f(x)=4x+7,\at x=5
|
derivative\:f(x)=4x+7,\at\:x=5
|
polar(2,2)
|
polar(2,2)
|
积分 tan(x)
|
积分\:\tan(x)
|
derivative f(x)=ln(x^2)
|
derivative\:f(x)=\ln(x^{2})
|
斜率 x=-5
|
斜率\:x=-5
|
derivative x^2e^{3x}
|
derivative\:x^{2}e^{3x}
|
derivative f(x)=x+2
|
derivative\:f(x)=x+2
|
积分 sqrt(x)
|
积分\:\sqrt{x}
|
derivative f(x)=3x+8,\at x=4
|
derivative\:f(x)=3x+8,\at\:x=4
|
斜率(8,4)(20,10)
|
斜率(8,4)(20,10)
|
斜率 y=2x+3
|
斜率\:y=2x+3
|
tangent x^2+y^2+2xy=4,\at(1,1)
|
tangent\:x^{2}+y^{2}+2xy=4,\at(1,1)
|
斜率 y=-3/4 x+11
|
斜率\:y=-\frac{3}{4}x+11
|
f(1)=5
|
f(1)=5
|
derivative f(x)=cos(2x)
|
derivative\:f(x)=\cos(2x)
|
距离(0,10)(-9,1)
|
距离(0,10)(-9,1)
|
derivative f(x)=x^2+x-5
|
derivative\:f(x)=x^{2}+x-5
|
polar(5,5)
|
polar(5,5)
|
polar y=x^2-x+7
|
polar\:y=x^{2}-x+7
|
x=9
|
x=9
|
斜率intercept 2x+y=6
|
斜率intercept\:2x+y=6
|
derivative f(x)=sqrt(1-x^2)
|
derivative\:f(x)=\sqrt{1-x^{2}}
|
derivative x^3sec(x)+sec(x)tan(x)x^4
|
derivative\:x^{3}\sec(x)+\sec(x)\tan(x)x^{4}
|
中点(-9,4)(2,-1)
|
中点(-9,4)(2,-1)
|
中点(8,-3)(-5,-9)
|
中点(8,-3)(-5,-9)
|
tangent x^2,\at(3,9)
|
tangent\:x^{2},\at(3,9)
|
derivative 6x
|
derivative\:6x
|
斜率 8x-6y=1
|
斜率\:8x-6y=1
|
斜率 y=2
|
斜率\:y=2
|
derivative f(x)=sec(x)
|
derivative\:f(x)=\sec(x)
|
derivative 9x
|
derivative\:9x
|
derivative f(x)=10x^5
|
derivative\:f(x)=10x^{5}
|
中点(a,b+3)(a-4,3b)
|
中点(a,b+3)(a-4,3b)
|
中点(13,8)(-6,-6)
|
中点(13,8)(-6,-6)
|
derivative 5e^x
|
derivative\:5e^{x}
|
斜率 4x-y+12=0
|
斜率\:4x-y+12=0
|
tangent f(x)=tan(2x),\at x=0
|
tangent\:f(x)=\tan(2x),\at\:x=0
|
derivative f(x)=x^5-2x^3+x
|
derivative\:f(x)=x^{5}-2x^{3}+x
|
derivative y=sqrt(2-x^2)
|
derivative\:y=\sqrt{2-x^{2}}
|
积分 x^2
|
积分\:x^{2}
|
tangent 3x^2-4
|
tangent\:3x^{2}-4
|
tangent y=x^2
|
tangent\:y=x^{2}
|
derivative y=5
|
derivative\:y=5
|
polar(5sqrt(3),5)
|
polar(5\sqrt{3},5)
|
derivative f(x)=e^{3x}
|
derivative\:f(x)=e^{3x}
|
derivative f(x)=(-5x^5-6x^4-6x^3)/(x^4)
|
derivative\:f(x)=\frac{-5x^{5}-6x^{4}-6x^{3}}{x^{4}}
|
derivative f(x)=x^2+2
|
derivative\:f(x)=x^{2}+2
|
tangent y=1+1/x
|
tangent\:y=1+\frac{1}{x}
|
derivative y=xsqrt(1-x^2)
|
derivative\:y=x\sqrt{1-x^{2}}
|
derivative xln(x)-x
|
derivative\:x\ln(x)-x
|
中点(-3,-8)(-6.5,-4.5)
|
中点(-3,-8)(-6.5,-4.5)
|
f(0)=1
|
f(0)=1
|
derivative x+1
|
derivative\:x+1
|
距离(0,0)(6,3)
|
距离(0,0)(6,3)
|
derivative y=-(x^2)/(10)+(9x)/(10)+11/5
|
derivative\:y=-\frac{x^{2}}{10}+\frac{9x}{10}+\frac{11}{5}
|
polar(-2sqrt(2),2sqrt(2))
|
polar(-2\sqrt{2},2\sqrt{2})
|
derivative y=2x^2(3x-4)
|
derivative\:y=2x^{2}(3x-4)
|
cartesian(-1, pi/3)
|
cartesian(-1,\frac{π}{3})
|
derivative f(x)=sin(x)^{x^3},\at x=
|
derivative\:f(x)=\sin(x)^{x^{3}},\at\:x=
|
derivative y=5^x
|
derivative\:y=5^{x}
|
中点(-36,0)(6,1)
|
中点(-36,0)(6,1)
|
斜率-3
|
斜率\:-3
|
derivative f(x)=(sqrt(x))/2
|
derivative\:f(x)=\frac{\sqrt{x}}{2}
|
derivative y=1
|
derivative\:y=1
|
f(2)=0
|
f(2)=0
|
x=-2/3
|
x=-\frac{2}{3}
|
中点(-1,-2)(3,6)
|
中点(-1,-2)(3,6)
|
derivative f(x)=x^2-2/x+3*sin(2x)
|
derivative\:f(x)=x^{2}-\frac{2}{x}+3\cdot\:\sin(2x)
|
中点(0,0)(2,6)
|
中点(0,0)(2,6)
|
derivative f(x)= 3/(x^4)
|
derivative\:f(x)=\frac{3}{x^{4}}
|
derivative y=x^{(7/3)}
|
derivative\:y=x^{(\frac{7}{3})}
|
tangent x^2+3x-5,\at x=1
|
tangent\:x^{2}+3x-5,\at\:x=1
|
中点(-8,-6)(-4,10)
|
中点(-8,-6)(-4,10)
|
斜率 y=7x
|
斜率\:y=7x
|
derivative x+1/x
|
derivative\:x+\frac{1}{x}
|
polar y=5x^2
|
polar\:y=5x^{2}
|
derivative f(x)=e^{-x+2},\at x=4
|
derivative\:f(x)=e^{-x+2},\at\:x=4
|
斜率 y=2x+4
|
斜率\:y=2x+4
|
中点(0,0)(8,6)
|
中点(0,0)(8,6)
|
derivative y=sec^2(x)
|
derivative\:y=\sec^{2}(x)
|
derivative 3x
|
derivative\:3x
|
derivative y=arctan(sqrt((1+x)/(1-x)))
|
derivative\:y=\arctan(\sqrt{\frac{1+x}{1-x}})
|