周期性 y=-4sin(6x+(pi)/2)
|
周期性\:y=-4\sin(6x+\frac{\pi}{2})
|
中点 (-1/4 ,-1/7)(3/4 , 6/7)
|
中点\:(-\frac{1}{4},-\frac{1}{7})(\frac{3}{4},\frac{6}{7})
|
渐近线 (x-9)/(sqrt(4x^2+3x+2))
|
渐近线\:\frac{x-9}{\sqrt{4x^{2}+3x+2}}
|
渐近线 f(x)=(x^2+9)/(x^2-9)
|
渐近线\:f(x)=\frac{x^{2}+9}{x^{2}-9}
|
extreme points f(x)=1-3x^2
|
extreme\:points\:f(x)=1-3x^{2}
|
斜率 0=3x-6
|
斜率\:0=3x-6
|
f(x)=(7-3x)/(2x-3)
|
f(x)=\frac{7-3x}{2x-3}
|
f(x)=-0.25x^2+50x+400
|
f(x)=-0.25x^{2}+50x+400
|
f(x)= 1/(sqrt(1-3x))
|
f(x)=\frac{1}{\sqrt{1-3x}}
|
y=x^2+18x+42
|
y=x^{2}+18x+42
|
f(x)=x 2/5
|
f(x)=x\frac{2}{5}
|
f(x)=\sqrt[x]{(10^x-6^x)/(25^x-15^x)}
|
f(x)=\sqrt[x]{\frac{10^{x}-6^{x}}{25^{x}-15^{x}}}
|
y=2-ln(x-1)
|
y=2-\ln(x-1)
|
f(x)= 1/((x+1)(x+2)(x+3))
|
f(x)=\frac{1}{(x+1)(x+2)(x+3)}
|
f(x)=x^4-5x^3+28x-16
|
f(x)=x^{4}-5x^{3}+28x-16
|
定义域 f(x)=|3x-2|
|
定义域\:f(x)=|3x-2|
|
y=x^6-x^2-x
|
y=x^{6}-x^{2}-x
|
f(x)=sqrt((x^2+3x)/(x^2-16))
|
f(x)=\sqrt{\frac{x^{2}+3x}{x^{2}-16}}
|
f(x)=log_{1/5}(x^2-x-12)+6
|
f(x)=\log_{\frac{1}{5}}(x^{2}-x-12)+6
|
f(x)=(5-2x)/(4x-2)
|
f(x)=\frac{5-2x}{4x-2}
|
f(x)=(sqrt(x+3)-3)/(6-x)
|
f(x)=\frac{\sqrt{x+3}-3}{6-x}
|
f(x)=x^3-9x^2+24x-2
|
f(x)=x^{3}-9x^{2}+24x-2
|
f(x)=sqrt(x^2-6x+8)
|
f(x)=\sqrt{x^{2}-6x+8}
|
f(x)=\sqrt[3]{x^2-6x+6}
|
f(x)=\sqrt[3]{x^{2}-6x+6}
|
f(x)=(-3x*log_{10}(x+8))/(\sqrt[3]{x+8)}
|
f(x)=\frac{-3x\cdot\:\log_{10}(x+8)}{\sqrt[3]{x+8}}
|
f(x)=x^3-2x^2+3
|
f(x)=x^{3}-2x^{2}+3
|
定义域 e^{((x-1)^2)/2}
|
定义域\:e^{\frac{(x-1)^{2}}{2}}
|
u(x)=-0.25x^2+15x-200
|
u(x)=-0.25x^{2}+15x-200
|
f(x)= 1/(\sqrt[3]{x)+2}
|
f(x)=\frac{1}{\sqrt[3]{x}+2}
|
f(x)=2x^3-9x^2+12x+6
|
f(x)=2x^{3}-9x^{2}+12x+6
|
f(x)=(2sqrt(x))/(x+1)
|
f(x)=\frac{2\sqrt{x}}{x+1}
|
y=-sqrt(16-x^2)
|
y=-\sqrt{16-x^{2}}
|
f(x)=-log_{3}(x-4)-2
|
f(x)=-\log_{3}(x-4)-2
|
f(x)=(4x^2-1)/(6x^3-x|2-3x|-1)
|
f(x)=\frac{4x^{2}-1}{6x^{3}-x\left|2-3x\right|-1}
|
P(x)=x^4+8x^2-384
|
P(x)=x^{4}+8x^{2}-384
|
f(x)=(2x^3-3x^2+5x)^3
|
f(x)=(2x^{3}-3x^{2}+5x)^{3}
|
f(x)=-2/3 x+1/4
|
f(x)=-\frac{2}{3}x+\frac{1}{4}
|
inflection points f(x)=(x^3)/3-3x^2-7x
|
inflection\:points\:f(x)=\frac{x^{3}}{3}-3x^{2}-7x
|
f(x)=(log_{10}(2))/(5x)
|
f(x)=\frac{\log_{10}(2)}{5x}
|
y=2(2)^{x+4}-1
|
y=2(2)^{x+4}-1
|
f(x)=((x-1)(x^2+x+1))/((x+3)(x-3))
|
f(x)=\frac{(x-1)(x^{2}+x+1)}{(x+3)(x-3)}
|
y=e^{-x^3}
|
y=e^{-x^{3}}
|
f(x)=x+4/(x^2)
|
f(x)=x+\frac{4}{x^{2}}
|
f(x)=arctan(2x+3)
|
f(x)=\arctan(2x+3)
|
f(x)=(2x-6)/(4-sqrt(7+x^2))
|
f(x)=\frac{2x-6}{4-\sqrt{7+x^{2}}}
|
f(x)=12x^3-5x^2-11x+6
|
f(x)=12x^{3}-5x^{2}-11x+6
|
f(x)=(sqrt(x^2-9))/(x^2+2x-8)
|
f(x)=\frac{\sqrt{x^{2}-9}}{x^{2}+2x-8}
|
f(x)= 8/(x^2-1)
|
f(x)=\frac{8}{x^{2}-1}
|
critical points y=ln(x-4)
|
critical\:points\:y=\ln(x-4)
|
P(x)=2x^2+4x-16
|
P(x)=2x^{2}+4x-16
|
f(x)= x/(x^2+49)
|
f(x)=\frac{x}{x^{2}+49}
|
f(x)=log_{2}(2x-1/2)
|
f(x)=\log_{2}(2x-\frac{1}{2})
|
f(x)=2x^2-8x+16
|
f(x)=2x^{2}-8x+16
|
r(x)=(x^2+5x)/(25-x^2)
|
r(x)=\frac{x^{2}+5x}{25-x^{2}}
|
f(x)=sin^2(x)cos^2(x)dx
|
f(x)=\sin^{2}(x)\cos^{2}(x)dx
|
{x+4:-3<= x<1,9:x=1,-x+3:x>1}
|
\left\{x+4:-3\le\:x<1,9:x=1,-x+3:x>1\right\}
|
f(x)=sqrt(x^2+2x-15)
|
f(x)=\sqrt{x^{2}+2x-15}
|
f(x)=0.3x^2-60x+6000
|
f(x)=0.3x^{2}-60x+6000
|
f(x)=(sqrt(2x-5))/(x^2-5x+4)
|
f(x)=\frac{\sqrt{2x-5}}{x^{2}-5x+4}
|
求反函数 f(x)=3x^2-6x
|
求反函数\:f(x)=3x^{2}-6x
|
f(x)=(3-2x)/(2x-5)
|
f(x)=\frac{3-2x}{2x-5}
|
f(x)=(2x-5)/(x^2-5x+6)
|
f(x)=\frac{2x-5}{x^{2}-5x+6}
|
f(y)=5y+2
|
f(y)=5y+2
|
f(x)=3x-9,-1<= x<= 7
|
f(x)=3x-9,-1\le\:x\le\:7
|
r(θ)=1-sin(θ),(0,2*pi)
|
r(θ)=1-\sin(θ),(0,2\cdot\:π)
|
f(x)=x^2+2|x-1|-2
|
f(x)=x^{2}+2\left|x-1\right|-2
|
y=2x^2-9x+10
|
y=2x^{2}-9x+10
|
y=-5x+21
|
y=-5x+21
|
f(x)=x^3-27x+5
|
f(x)=x^{3}-27x+5
|
f(x)=2sqrt(x)+4
|
f(x)=2\sqrt{x}+4
|
求反函数 f(x)=\sqrt[5]{x^7+3}
|
求反函数\:f(x)=\sqrt[5]{x^{7}+3}
|
y=cos(x-pi/2)
|
y=\cos(x-\frac{π}{2})
|
f(t)=4sin(4t)cos(2t)-(4-t)^2+7
|
f(t)=4\sin(4t)\cos(2t)-(4-t)^{2}+7
|
f(x)=(-x)/2+1/4
|
f(x)=\frac{-x}{2}+\frac{1}{4}
|
f(x)= x/(12-x-x^2)+sqrt((x+8)/2-5)
|
f(x)=\frac{x}{12-x-x^{2}}+\sqrt{\frac{x+8}{2}-5}
|
g(x)=(6x^2+x-5)/(3x^2-7x-20)
|
g(x)=\frac{6x^{2}+x-5}{3x^{2}-7x-20}
|
f(x)=sqrt(6x+3)
|
f(x)=\sqrt{6x+3}
|
y=(x^3)/(-x^2+4)
|
y=\frac{x^{3}}{-x^{2}+4}
|
f(x)=x^4-2cos(x)
|
f(x)=x^{4}-2\cos(x)
|
extreme points f(x)=5x^2-15x+3
|
extreme\:points\:f(x)=5x^{2}-15x+3
|
f(x)=sin(pi/x)
|
f(x)=\sin(\frac{π}{x})
|
f(x)=(x^3-4x)/(-4x^2+12x)
|
f(x)=\frac{x^{3}-4x}{-4x^{2}+12x}
|
f(x)=x^5-3x^4-5x^3+5x^2-6x+8
|
f(x)=x^{5}-3x^{4}-5x^{3}+5x^{2}-6x+8
|
f(t)=(t^2-t+1)/(t^2+1)
|
f(t)=\frac{t^{2}-t+1}{t^{2}+1}
|
f(x)=(2x^3)/((2x-2)^2)
|
f(x)=\frac{2x^{3}}{(2x-2)^{2}}
|
y=(1+x^2)/(1-x^2)
|
y=\frac{1+x^{2}}{1-x^{2}}
|
f(x)=sin(x-pi/4)
|
f(x)=\sin(x-\frac{π}{4})
|
f(x)=2^{x+4}+1
|
f(x)=2^{x+4}+1
|
f(x)=1+2x-x^2
|
f(x)=1+2x-x^{2}
|
f(x)=6x^2+12x+1
|
f(x)=6x^{2}+12x+1
|
值域 e^x-2
|
值域\:e^{x}-2
|
f(x)=3x^{-2}+5x^2
|
f(x)=3x^{-2}+5x^{2}
|
f(z)=4cosh(z)sinh(z)
|
f(z)=4\cosh(z)\sinh(z)
|
y=x^3(x-2)
|
y=x^{3}(x-2)
|
f(x)= 1/(sqrt(4+x^2))
|
f(x)=\frac{1}{\sqrt{4+x^{2}}}
|
f(x)=|x+2|-|x-1|+|x-4|
|
f(x)=\left|x+2\right|-\left|x-1\right|+\left|x-4\right|
|
f(x)=(5-3x)/(2x-3)
|
f(x)=\frac{5-3x}{2x-3}
|
p(x)=400-2x
|
p(x)=400-2x
|
f(x)=arctan(x)dx
|
f(x)=\arctan(x)dx
|
f(x)=(4-x^2)
|
f(x)=(4-x^{2})
|