解答
2+2(sin(x))2sin3(x)=1
解答
x∈R无解
求解步骤
2+2(sin(x))2sin3(x)=1
用替代法求解
2+2(sin(x))2sin3(x)=1
令:sin(x)=u2+2u2u3=1
2+2u2u3=1:u≈2.35930…
2+2u2u3=1
在两边乘以 2+2u2
2+2u2u3=1
在两边乘以 2+2u22+2u2u3(2+2u2)=1⋅(2+2u2)
化简
2+2u2u3(2+2u2)=1⋅(2+2u2)
化简 2+2u2u3(2+2u2):u3
2+2u2u3(2+2u2)
分式相乘: a⋅cb=ca⋅b=2+2u2u3(2+2u2)
约分:2+2u2=u3
化简 1⋅(2+2u2):2+2u2
1⋅(2+2u2)
乘以:1⋅(2+2u2)=(2+2u2)=(2+2u2)
去除括号: (a)=a=2+2u2
u3=2+2u2
u3=2+2u2
u3=2+2u2
解 u3=2+2u2:u≈2.35930…
u3=2+2u2
将 2u2para o lado esquerdo
u3=2+2u2
两边减去 2u2u3−2u2=2+2u2−2u2
化简u3−2u2=2
u3−2u2=2
将 2para o lado esquerdo
u3−2u2=2
两边减去 2u3−2u2−2=2−2
化简u3−2u2−2=0
u3−2u2−2=0
使用牛顿-拉弗森方法找到 u3−2u2−2=0 的一个解:u≈2.35930…
u3−2u2−2=0
牛顿-拉弗森近似法定义
f(u)=u3−2u2−2
找到 f′(u):3u2−4u
dud(u3−2u2−2)
使用微分加减法定则: (f±g)′=f′±g′=dud(u3)−dud(2u2)−dud(2)
dud(u3)=3u2
dud(u3)
使用幂法则: dxd(xa)=a⋅xa−1=3u3−1
化简=3u2
dud(2u2)=4u
dud(2u2)
将常数提出: (a⋅f)′=a⋅f′=2dud(u2)
使用幂法则: dxd(xa)=a⋅xa−1=2⋅2u2−1
化简=4u
dud(2)=0
dud(2)
常数微分: dxd(a)=0=0
=3u2−4u−0
化简=3u2−4u
令 u0=−1计算 un+1 至 Δun+1<0.000001
u1=−0.28571…:Δu1=0.71428…
f(u0)=(−1)3−2(−1)2−2=−5f′(u0)=3(−1)2−4(−1)=7u1=−0.28571…
Δu1=∣−0.28571…−(−1)∣=0.71428…Δu1=0.71428…
u2=1.28991…:Δu2=1.57563…
f(u1)=(−0.28571…)3−2(−0.28571…)2−2=−2.18658…f′(u1)=3(−0.28571…)2−4(−0.28571…)=1.38775…u2=1.28991…
Δu2=∣1.28991…−(−0.28571…)∣=1.57563…Δu2=1.57563…
u3=−17.64595…:Δu3=18.93587…
f(u2)=1.28991…3−2⋅1.28991…2−2=−3.18149…f′(u2)=3⋅1.28991…2−4⋅1.28991…=−0.16801…u3=−17.64595…
Δu3=∣−17.64595…−1.28991…∣=18.93587…Δu3=18.93587…
u4=−11.55537…:Δu4=6.09058…
f(u3)=(−17.64595…)3−2(−17.64595…)2−2=−6119.35487…f′(u3)=3(−17.64595…)2−4(−17.64595…)=1004.72330…u4=−11.55537…
Δu4=∣−11.55537…−(−17.64595…)∣=6.09058…Δu4=6.09058…
u5=−7.49987…:Δu5=4.05549…
f(u4)=(−11.55537…)3−2(−11.55537…)2−2=−1812.00239…f′(u4)=3(−11.55537…)2−4(−11.55537…)=446.80124…u5=−7.49987…
Δu5=∣−7.49987…−(−11.55537…)∣=4.05549…Δu5=4.05549…
u6=−4.80117…:Δu6=2.69869…
f(u5)=(−7.49987…)3−2(−7.49987…)2−2=−536.34930…f′(u5)=3(−7.49987…)2−4(−7.49987…)=198.74366…u6=−4.80117…
Δu6=∣−4.80117…−(−7.49987…)∣=2.69869…Δu6=2.69869…
u7=−3.00422…:Δu7=1.79694…
f(u6)=(−4.80117…)3−2(−4.80117…)2−2=−158.77552…f′(u6)=3(−4.80117…)2−4(−4.80117…)=88.35844…u7=−3.00422…
Δu7=∣−3.00422…−(−4.80117…)∣=1.79694…Δu7=1.79694…
u8=−1.79774…:Δu8=1.20648…
f(u7)=(−3.00422…)3−2(−3.00422…)2−2=−47.16492…f′(u7)=3(−3.00422…)2−4(−3.00422…)=39.09297…u8=−1.79774…
Δu8=∣−1.79774…−(−3.00422…)∣=1.20648…Δu8=1.20648…
u9=−0.95246…:Δu9=0.84527…
f(u8)=(−1.79774…)3−2(−1.79774…)2−2=−14.27385…f′(u8)=3(−1.79774…)2−4(−1.79774…)=16.88661…u9=−0.95246…
Δu9=∣−0.95246…−(−1.79774…)∣=0.84527…Δu9=0.84527…
u10=−0.23616…:Δu10=0.71629…
f(u9)=(−0.95246…)3−2(−0.95246…)2−2=−4.67845…f′(u9)=3(−0.95246…)2−4(−0.95246…)=6.53144…u10=−0.23616…
Δu10=∣−0.23616…−(−0.95246…)∣=0.71629…Δu10=0.71629…
u11=1.67454…:Δu11=1.91071…
f(u10)=(−0.23616…)3−2(−0.23616…)2−2=−2.12472…f′(u10)=3(−0.23616…)2−4(−0.23616…)=1.11200…u11=1.67454…
Δu11=∣1.67454…−(−0.23616…)∣=1.91071…Δu11=1.91071…
u12=3.37374…:Δu12=1.69920…
f(u11)=1.67454…3−2⋅1.67454…2−2=−2.91261…f′(u11)=3⋅1.67454…2−4⋅1.67454…=1.71410…u12=3.37374…
Δu12=∣3.37374…−1.67454…∣=1.69920…Δu12=1.69920…
u13=2.71344…:Δu13=0.66030…
f(u12)=3.37374…3−2⋅3.37374…2−2=13.63622…f′(u12)=3⋅3.37374…2−4⋅3.37374…=20.65152…u13=2.71344…
Δu13=∣2.71344…−3.37374…∣=0.66030…Δu13=0.66030…
u14=2.42389…:Δu14=0.28954…
f(u13)=2.71344…3−2⋅2.71344…2−2=3.25295…f′(u13)=3⋅2.71344…2−4⋅2.71344…=11.23458…u14=2.42389…
Δu14=∣2.42389…−2.71344…∣=0.28954…Δu14=0.28954…
u15=2.36204…:Δu15=0.06185…
f(u14)=2.42389…3−2⋅2.42389…2−2=0.49051…f′(u14)=3⋅2.42389…2−4⋅2.42389…=7.93025…u15=2.36204…
Δu15=∣2.36204…−2.42389…∣=0.06185…Δu15=0.06185…
u16=2.35930…:Δu16=0.00273…
f(u15)=2.36204…3−2⋅2.36204…2−2=0.01993…f′(u15)=3⋅2.36204…2−4⋅2.36204…=7.28957…u16=2.35930…
Δu16=∣2.35930…−2.36204…∣=0.00273…Δu16=0.00273…
u17=2.35930…:Δu17=5.23398E−6
f(u16)=2.35930…3−2⋅2.35930…2−2=0.00003…f′(u16)=3⋅2.35930…2−4⋅2.35930…=7.26178…u17=2.35930…
Δu17=∣2.35930…−2.35930…∣=5.23398E−6Δu17=5.23398E−6
u18=2.35930…:Δu18=1.9156E−11
f(u17)=2.35930…3−2⋅2.35930…2−2=1.39106E−10f′(u17)=3⋅2.35930…2−4⋅2.35930…=7.26173…u18=2.35930…
Δu18=∣2.35930…−2.35930…∣=1.9156E−11Δu18=1.9156E−11
u≈2.35930…
使用长除法 Equation0:u−2.35930…u3−2u2−2=u2+0.35930…u+0.84770…
u2+0.35930…u+0.84770…≈0
使用牛顿-拉弗森方法找到 u2+0.35930…u+0.84770…=0 的一个解:u∈R无解
u2+0.35930…u+0.84770…=0
牛顿-拉弗森近似法定义
f(u)=u2+0.35930…u+0.84770…
找到 f′(u):2u+0.35930…
dud(u2+0.35930…u+0.84770…)
使用微分加减法定则: (f±g)′=f′±g′=dud(u2)+dud(0.35930…u)+dud(0.84770…)
dud(u2)=2u
dud(u2)
使用幂法则: dxd(xa)=a⋅xa−1=2u2−1
化简=2u
dud(0.35930…u)=0.35930…
dud(0.35930…u)
将常数提出: (a⋅f)′=a⋅f′=0.35930…dudu
使用常见微分定则: dudu=1=0.35930…⋅1
化简=0.35930…
dud(0.84770…)=0
dud(0.84770…)
常数微分: dxd(a)=0=0
=2u+0.35930…+0
化简=2u+0.35930…
令 u0=−2计算 un+1 至 Δun+1<0.000001
u1=−0.86584…:Δu1=1.13415…
f(u0)=(−2)2+0.35930…(−2)+0.84770…=4.12909…f′(u0)=2(−2)+0.35930…=−3.64069…u1=−0.86584…
Δu1=∣−0.86584…−(−2)∣=1.13415…Δu1=1.13415…
u2=0.07141…:Δu2=0.93726…
f(u1)=(−0.86584…)2+0.35930…(−0.86584…)+0.84770…=1.28629…f′(u1)=2(−0.86584…)+0.35930…=−1.37239…u2=0.07141…
Δu2=∣0.07141…−(−0.86584…)∣=0.93726…Δu2=0.93726…
u3=−1.67803…:Δu3=1.74945…
f(u2)=0.07141…2+0.35930…⋅0.07141…+0.84770…=0.87846…f′(u2)=2⋅0.07141…+0.35930…=0.50213…u3=−1.67803…
Δu3=∣−1.67803…−0.07141…∣=1.74945…Δu3=1.74945…
u4=−0.65673…:Δu4=1.02129…
f(u3)=(−1.67803…)2+0.35930…(−1.67803…)+0.84770…=3.06057…f′(u3)=2(−1.67803…)+0.35930…=−2.99676…u4=−0.65673…
Δu4=∣−0.65673…−(−1.67803…)∣=1.02129…Δu4=1.02129…
u5=0.43640…:Δu5=1.09314…
f(u4)=(−0.65673…)2+0.35930…(−0.65673…)+0.84770…=1.04304…f′(u4)=2(−0.65673…)+0.35930…=−0.95417…u5=0.43640…
Δu5=∣0.43640…−(−0.65673…)∣=1.09314…Δu5=1.09314…
u6=−0.53344…:Δu6=0.96984…
f(u5)=0.43640…2+0.35930…⋅0.43640…+0.84770…=1.19495…f′(u5)=2⋅0.43640…+0.35930…=1.23210…u6=−0.53344…
Δu6=∣−0.53344…−0.43640…∣=0.96984…Δu6=0.96984…
u7=0.79587…:Δu7=1.32931…
f(u6)=(−0.53344…)2+0.35930…(−0.53344…)+0.84770…=0.94060…f′(u6)=2(−0.53344…)+0.35930…=−0.70758…u7=0.79587…
Δu7=∣0.79587…−(−0.53344…)∣=1.32931…Δu7=1.32931…
u8=−0.10983…:Δu8=0.90570…
f(u7)=0.79587…2+0.35930…⋅0.79587…+0.84770…=1.76707…f′(u7)=2⋅0.79587…+0.35930…=1.95104…u8=−0.10983…
Δu8=∣−0.10983…−0.79587…∣=0.90570…Δu8=0.90570…
u9=−5.98468…:Δu9=5.87485…
f(u8)=(−0.10983…)2+0.35930…(−0.10983…)+0.84770…=0.82030…f′(u8)=2(−0.10983…)+0.35930…=0.13963…u9=−5.98468…
Δu9=∣−5.98468…−(−0.10983…)∣=5.87485…Δu9=5.87485…
无法得出解
解是u≈2.35930…
u≈2.35930…
u=sin(x)代回sin(x)≈2.35930…
sin(x)≈2.35930…
sin(x)=2.35930…:无解
sin(x)=2.35930…
−1≤sin(x)≤1无解
合并所有解x∈R无解