解答
(1+tan2(a))sin2(a)+1=1
解答
a=2πn,a=π+2πn
+1
度数
a=0∘+360∘n,a=180∘+360∘n求解步骤
(1+tan2(a))sin2(a)+1=1
两边减去 11+tan2(a)sin2(a)+1−1=0
化简 1+tan2(a)sin2(a)+1−1:1+tan2(a)sin2(a)−tan2(a)
1+tan2(a)sin2(a)+1−1
将项转换为分式: 1=1+tan2(a)1(1+tan2(a))=1+tan2(a)sin2(a)+1−1+tan2(a)1⋅(1+tan2(a))
因为分母相等,所以合并分式: ca±cb=ca±b=1+tan2(a)sin2(a)+1−1⋅(1+tan2(a))
乘以:1⋅(1+tan2(a))=(1+tan2(a))=1+tan2(a)sin2(a)+1−(tan2(a)+1)
乘开 sin2(a)+1−(1+tan2(a)):sin2(a)−tan2(a)
sin2(a)+1−(1+tan2(a))
−(1+tan2(a)):−1−tan2(a)
−(1+tan2(a))
打开括号=−(1)−(tan2(a))
使用加减运算法则+(−a)=−a=−1−tan2(a)
=sin2(a)+1−1−tan2(a)
1−1=0=sin2(a)−tan2(a)
=1+tan2(a)sin2(a)−tan2(a)
1+tan2(a)sin2(a)−tan2(a)=0
g(x)f(x)=0⇒f(x)=0sin2(a)−tan2(a)=0
分解 sin2(a)−tan2(a):(sin(a)+tan(a))(sin(a)−tan(a))
sin2(a)−tan2(a)
使用平方差公式: x2−y2=(x+y)(x−y)sin2(a)−tan2(a)=(sin(a)+tan(a))(sin(a)−tan(a))=(sin(a)+tan(a))(sin(a)−tan(a))
(sin(a)+tan(a))(sin(a)−tan(a))=0
分别求解每个部分sin(a)+tan(a)=0orsin(a)−tan(a)=0
sin(a)+tan(a)=0:a=2πn,a=π+2πn
sin(a)+tan(a)=0
用 sin, cos 表示
sin(a)+tan(a)
使用基本三角恒等式: tan(x)=cos(x)sin(x)=sin(a)+cos(a)sin(a)
化简 sin(a)+cos(a)sin(a):cos(a)sin(a)cos(a)+sin(a)
sin(a)+cos(a)sin(a)
将项转换为分式: sin(a)=cos(a)sin(a)cos(a)=cos(a)sin(a)cos(a)+cos(a)sin(a)
因为分母相等,所以合并分式: ca±cb=ca±b=cos(a)sin(a)cos(a)+sin(a)
=cos(a)sin(a)cos(a)+sin(a)
cos(a)sin(a)+cos(a)sin(a)=0
g(x)f(x)=0⇒f(x)=0sin(a)+cos(a)sin(a)=0
分解 sin(a)+cos(a)sin(a):sin(a)(cos(a)+1)
sin(a)+cos(a)sin(a)
因式分解出通项 sin(a)=sin(a)(1+cos(a))
sin(a)(cos(a)+1)=0
分别求解每个部分sin(a)=0orcos(a)+1=0
sin(a)=0:a=2πn,a=π+2πn
sin(a)=0
sin(a)=0的通解
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
a=0+2πn,a=π+2πn
a=0+2πn,a=π+2πn
解 a=0+2πn:a=2πn
a=0+2πn
0+2πn=2πna=2πn
a=2πn,a=π+2πn
cos(a)+1=0:a=π+2πn
cos(a)+1=0
将 1到右边
cos(a)+1=0
两边减去 1cos(a)+1−1=0−1
化简cos(a)=−1
cos(a)=−1
cos(a)=−1的通解
cos(x) 周期表(周期为 2πn):
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
a=π+2πn
a=π+2πn
合并所有解a=2πn,a=π+2πn
sin(a)−tan(a)=0:a=2πn,a=π+2πn
sin(a)−tan(a)=0
用 sin, cos 表示
sin(a)−tan(a)
使用基本三角恒等式: tan(x)=cos(x)sin(x)=sin(a)−cos(a)sin(a)
化简 sin(a)−cos(a)sin(a):cos(a)sin(a)cos(a)−sin(a)
sin(a)−cos(a)sin(a)
将项转换为分式: sin(a)=cos(a)sin(a)cos(a)=cos(a)sin(a)cos(a)−cos(a)sin(a)
因为分母相等,所以合并分式: ca±cb=ca±b=cos(a)sin(a)cos(a)−sin(a)
=cos(a)sin(a)cos(a)−sin(a)
cos(a)−sin(a)+cos(a)sin(a)=0
g(x)f(x)=0⇒f(x)=0−sin(a)+cos(a)sin(a)=0
分解 −sin(a)+cos(a)sin(a):sin(a)(cos(a)−1)
−sin(a)+cos(a)sin(a)
因式分解出通项 sin(a)=sin(a)(−1+cos(a))
sin(a)(cos(a)−1)=0
分别求解每个部分sin(a)=0orcos(a)−1=0
sin(a)=0:a=2πn,a=π+2πn
sin(a)=0
sin(a)=0的通解
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
a=0+2πn,a=π+2πn
a=0+2πn,a=π+2πn
解 a=0+2πn:a=2πn
a=0+2πn
0+2πn=2πna=2πn
a=2πn,a=π+2πn
cos(a)−1=0:a=2πn
cos(a)−1=0
将 1到右边
cos(a)−1=0
两边加上 1cos(a)−1+1=0+1
化简cos(a)=1
cos(a)=1
cos(a)=1的通解
cos(x) 周期表(周期为 2πn):
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
a=0+2πn
a=0+2πn
解 a=0+2πn:a=2πn
a=0+2πn
0+2πn=2πna=2πn
a=2πn
合并所有解a=2πn,a=π+2πn
合并所有解a=2πn,a=π+2πn