三角 速查表


三角 速查表

基本恒等式

\tan(x) = \frac{\sin(x)}{\cos(x)} \tan(x) = \frac{1}{\cot(x)}
\cot(x) = \frac{1}{\tan(x)} \cot(x) = \frac{\cos(x)}{\sin(x)}
\sec(x) = \frac{1}{\cos(x)} \csc(x) = \frac{1}{\sin(x)}


毕达哥拉斯恒等式

\cos^2(x)+\sin^2(x) = 1 \sec^2(x)-\tan^2(x) = 1
\csc^2(x)-\cot^2(x) = 1


倍角公式

\sin(2x)=2\sin(x)\cos(x) \cos(2x)=1-2\sin^2(x)
\cos(2x) = 2\cos^2(x)-1 \cos(2x) = \cos^2(x)-\sin^2(x)
\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}


和/差公式

\sin(s+t) = \sin(s)\cos(t)+\cos(s)\sin(t)
\sin(s-t) = \sin(s)\cos(t)-\cos(s)\sin(t)
\cos(s+t) = \cos(s)\cos(t)-\sin(s)\sin(t)
\cos(s-t) = \cos(s)\cos(t)+\sin(s)\sin(t)
\tan(s+t) = \frac{\tan(s)+\tan(t)}{1-\tan(s)\tan(t)}
\tan(s-t) = \frac{\tan(s)-\tan(t)}{1+\tan(s)\tan(t)}


积化和差公式

\cos(s)\cos(t)=\frac{\cos(s-t)+\cos(s+t)}{2}
\sin(s)\sin(t)=\frac{\cos(s-t)-\cos(s+t)}{2}
\sin(s)\cos(t)=\frac{\sin(s+t)+\sin(s-t)}{2}
\cos(s)\sin(t)=\frac{\sin(s+t)-\sin(s-t)}{2}


三倍角公式

\sin(3x)=-\sin^3(x)+3\cos^2(x)\sin(x)
\sin(3x)=-4\sin^3(x)+3\sin(x)
\cos(3x)=\cos^3(x)-3\sin^2(x)\cos(x)
\cos(3x)=4\cos^3(x)-3\cos(x)
\tan(3x)=\frac{3\tan(x)-\tan^3(x)}{1-3\tan^2(x)}
\cot(3x)=\frac{3\cot(x)-\cot^3(x)}{1-3\cot^2(x)}


函数范围

y = \sin(x) -1\le y\le 1
y = \cos(x) -1\le y\le 1
y = \tan(x) -\infty < y <\infty
y = \cot(x) -\infty < y <\infty
y = \csc(x) -\infty < y\le 1\:\bigcup \:1\le y < \infty
y = \sec(y) -\infty < y\le 1\:\bigcup \:1\le y < \infty
y = \arcsin(x) -\frac{\pi \:}{2}\:\le y\le \:\:\frac{\pi \:}{2}\:
y = \arccos(x) 0\:\le \:y\:\le \:\pi
y = \arctan(x) -\frac{\pi \:}{2} < \:y < \frac{\pi \:}{2}:
y = \arccot(x) 0 < x < \pi
y = \arccsc(x) 0\le y <\frac{\pi }{2}\:\bigcup \:\pi\le y <\frac{3\pi }{2}
y = \arcsec(x) -\pi < y\le -\frac{\pi }{2}\:\bigcup \:0 < y < \frac{\pi }{2}<\infty


函数值

sin(x) cos(x) tan(x) cot(x)
0 0 1 0 \mathrm{未定义}
\frac{π}{6} \frac{1}{2} \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{3} \sqrt{3}
\frac{π}{4} \frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2} 1 1
\frac{π}{3} \frac{\sqrt{3}}{2} \frac{1}{2} \sqrt{3} \frac{\sqrt{3}}{3}
\frac{π}{2} 1 0 \mathrm{未定义} 0
\frac{2π}{3} \frac{\sqrt{3}}{2} -\frac{1}{2} -\sqrt{3} -\frac{\sqrt{3}}{3}
\frac{3π}{4} \frac{\sqrt{2}}{2} -\frac{\sqrt{2}}{2} -1 -1
\frac{5π}{6} \frac{1}{2} -\frac{\sqrt{3}}{2} -\frac{\sqrt{3}}{3} -\sqrt{3}
π 0 -1 0 \mathrm{未定义}
\frac{7π}{6} -\frac{1}{2} -\frac{\sqrt{3}}{2} \frac{\sqrt{3}}{3} \sqrt{3}
\frac{5π}{4} -\frac{\sqrt{2}}{2} -\frac{\sqrt{2}}{2} 1 1
\frac{4π}{3} -\frac{\sqrt{3}}{2} -\frac{1}{2} \sqrt{3} \frac{\sqrt{3}}{3}
\frac{3π}{2} -1 0 \mathrm{未定义} 0
\frac{5π}{3} -\frac{\sqrt{3}}{2} \frac{1}{2} -\sqrt{3} -\frac{\sqrt{3}}{3}
\frac{7π}{4} -\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2} -1 -1
\frac{11π}{6} -\frac{1}{2} \frac{\sqrt{3}}{2} -\frac{\sqrt{3}}{3} -\sqrt{3}
0 1 0 \mathrm{未定义}
我没有账户

忘记密码

Change Password Email Address
发送重置链接

我们已发送
电子邮件至:

[email protected]
To create your new password, just click the link in the email we sent you.
加入9000万快乐用户大家庭!
我已注册

感谢您
的订阅!


继续访问网站 »

Processing...

THANK YOU
FOR SUBSCRIBING!


请注意:此订阅会自动续订,直至您取消

继续访问网站 »

交易失败!

请使用其他支付方法重试

订阅以获取更多信息:

  • 完整访问求解步骤
  • 移动端免费升级
  • 有限存储空间
  • 数千道练习题
  • 测验
  • 详细的进度报告
  • 创建研究组
  • 无广告
Remind me later »
One Time Payment $5.99 美元 2 个月
Weekly Subscription $0.99 美元/周 (直至取消)
月度订阅 $2.49 美元/月 (直至取消)
年度订阅 $19.99 美元/年 (直至取消)
用户数据缺失
请联系支持

我们希望您能提供反馈

(可选)
(可选)

请添加消息。

已收到消息。感谢您的反馈。

Generating PDF...