解答
2⋅sin(a)=sin(3a)
解答
a=2πn,a=π+2πn,a=67π+2πn,a=611π+2πn,a=6π+2πn,a=65π+2πn
+1
度数
a=0∘+360∘n,a=180∘+360∘n,a=210∘+360∘n,a=330∘+360∘n,a=30∘+360∘n,a=150∘+360∘n求解步骤
2sin(a)=sin(3a)
两边减去 sin(3a)2sin(a)−sin(3a)=0
使用三角恒等式改写
−sin(3a)+2sin(a)
sin(3a)=3sin(a)−4sin3(a)
sin(3a)
使用三角恒等式改写
sin(3a)
改写为=sin(2a+a)
使用角和恒等式: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(2a)cos(a)+cos(2a)sin(a)
使用倍角公式: sin(2a)=2sin(a)cos(a)=cos(2a)sin(a)+cos(a)2sin(a)cos(a)
化简 cos(2a)sin(a)+cos(a)⋅2sin(a)cos(a):sin(a)cos(2a)+2cos2(a)sin(a)
cos(2a)sin(a)+cos(a)2sin(a)cos(a)
cos(a)⋅2sin(a)cos(a)=2cos2(a)sin(a)
cos(a)2sin(a)cos(a)
使用指数法则: ab⋅ac=ab+ccos(a)cos(a)=cos1+1(a)=2sin(a)cos1+1(a)
数字相加:1+1=2=2sin(a)cos2(a)
=sin(a)cos(2a)+2cos2(a)sin(a)
=sin(a)cos(2a)+2cos2(a)sin(a)
=sin(a)cos(2a)+2cos2(a)sin(a)
使用倍角公式: cos(2a)=1−2sin2(a)=(1−2sin2(a))sin(a)+2cos2(a)sin(a)
使用毕达哥拉斯恒等式: cos2(a)+sin2(a)=1cos2(a)=1−sin2(a)=(1−2sin2(a))sin(a)+2(1−sin2(a))sin(a)
乘开 (1−2sin2(a))sin(a)+2(1−sin2(a))sin(a):−4sin3(a)+3sin(a)
(1−2sin2(a))sin(a)+2(1−sin2(a))sin(a)
=sin(a)(1−2sin2(a))+2sin(a)(1−sin2(a))
乘开 sin(a)(1−2sin2(a)):sin(a)−2sin3(a)
sin(a)(1−2sin2(a))
使用分配律: a(b−c)=ab−aca=sin(a),b=1,c=2sin2(a)=sin(a)1−sin(a)2sin2(a)
=1sin(a)−2sin2(a)sin(a)
化简 1⋅sin(a)−2sin2(a)sin(a):sin(a)−2sin3(a)
1sin(a)−2sin2(a)sin(a)
1⋅sin(a)=sin(a)
1sin(a)
乘以:1⋅sin(a)=sin(a)=sin(a)
2sin2(a)sin(a)=2sin3(a)
2sin2(a)sin(a)
使用指数法则: ab⋅ac=ab+csin2(a)sin(a)=sin2+1(a)=2sin2+1(a)
数字相加:2+1=3=2sin3(a)
=sin(a)−2sin3(a)
=sin(a)−2sin3(a)
=sin(a)−2sin3(a)+2(1−sin2(a))sin(a)
乘开 2sin(a)(1−sin2(a)):2sin(a)−2sin3(a)
2sin(a)(1−sin2(a))
使用分配律: a(b−c)=ab−aca=2sin(a),b=1,c=sin2(a)=2sin(a)1−2sin(a)sin2(a)
=2⋅1sin(a)−2sin2(a)sin(a)
化简 2⋅1⋅sin(a)−2sin2(a)sin(a):2sin(a)−2sin3(a)
2⋅1sin(a)−2sin2(a)sin(a)
2⋅1⋅sin(a)=2sin(a)
2⋅1sin(a)
数字相乘:2⋅1=2=2sin(a)
2sin2(a)sin(a)=2sin3(a)
2sin2(a)sin(a)
使用指数法则: ab⋅ac=ab+csin2(a)sin(a)=sin2+1(a)=2sin2+1(a)
数字相加:2+1=3=2sin3(a)
=2sin(a)−2sin3(a)
=2sin(a)−2sin3(a)
=sin(a)−2sin3(a)+2sin(a)−2sin3(a)
化简 sin(a)−2sin3(a)+2sin(a)−2sin3(a):−4sin3(a)+3sin(a)
sin(a)−2sin3(a)+2sin(a)−2sin3(a)
对同类项分组=−2sin3(a)−2sin3(a)+sin(a)+2sin(a)
同类项相加:−2sin3(a)−2sin3(a)=−4sin3(a)=−4sin3(a)+sin(a)+2sin(a)
同类项相加:sin(a)+2sin(a)=3sin(a)=−4sin3(a)+3sin(a)
=−4sin3(a)+3sin(a)
=−4sin3(a)+3sin(a)
=−(3sin(a)−4sin3(a))+2sin(a)
化简 −(3sin(a)−4sin3(a))+2sin(a):−sin(a)+4sin3(a)
−(3sin(a)−4sin3(a))+2sin(a)
−(3sin(a)−4sin3(a)):−3sin(a)+4sin3(a)
−(3sin(a)−4sin3(a))
打开括号=−(3sin(a))−(−4sin3(a))
使用加减运算法则−(−a)=a,−(a)=−a=−3sin(a)+4sin3(a)
=−3sin(a)+4sin3(a)+2sin(a)
同类项相加:−3sin(a)+2sin(a)=−sin(a)=−sin(a)+4sin3(a)
=−sin(a)+4sin3(a)
−sin(a)+4sin3(a)=0
用替代法求解
−sin(a)+4sin3(a)=0
令:sin(a)=u−u+4u3=0
−u+4u3=0:u=0,u=−21,u=21
−u+4u3=0
因式分解 −u+4u3:u(2u+1)(2u−1)
−u+4u3
因式分解出通项 u:u(4u2−1)
4u3−u
使用指数法则: ab+c=abacu3=u2u=4u2u−u
因式分解出通项 u=u(4u2−1)
=u(4u2−1)
分解 4u2−1:(2u+1)(2u−1)
4u2−1
将 4u2−1 改写为 (2u)2−12
4u2−1
将 4 改写为 22=22u2−1
将 1 改写为 12=22u2−12
使用指数法则: ambm=(ab)m22u2=(2u)2=(2u)2−12
=(2u)2−12
使用平方差公式: x2−y2=(x+y)(x−y)(2u)2−12=(2u+1)(2u−1)=(2u+1)(2u−1)
=u(2u+1)(2u−1)
u(2u+1)(2u−1)=0
使用零因数法则: If ab=0then a=0or b=0u=0or2u+1=0or2u−1=0
解 2u+1=0:u=−21
2u+1=0
将 1到右边
2u+1=0
两边减去 12u+1−1=0−1
化简2u=−1
2u=−1
两边除以 2
2u=−1
两边除以 222u=2−1
化简u=−21
u=−21
解 2u−1=0:u=21
2u−1=0
将 1到右边
2u−1=0
两边加上 12u−1+1=0+1
化简2u=1
2u=1
两边除以 2
2u=1
两边除以 222u=21
化简u=21
u=21
解为u=0,u=−21,u=21
u=sin(a)代回sin(a)=0,sin(a)=−21,sin(a)=21
sin(a)=0,sin(a)=−21,sin(a)=21
sin(a)=0:a=2πn,a=π+2πn
sin(a)=0
sin(a)=0的通解
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
a=0+2πn,a=π+2πn
a=0+2πn,a=π+2πn
解 a=0+2πn:a=2πn
a=0+2πn
0+2πn=2πna=2πn
a=2πn,a=π+2πn
sin(a)=−21:a=67π+2πn,a=611π+2πn
sin(a)=−21
sin(a)=−21的通解
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
a=67π+2πn,a=611π+2πn
a=67π+2πn,a=611π+2πn
sin(a)=21:a=6π+2πn,a=65π+2πn
sin(a)=21
sin(a)=21的通解
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
a=6π+2πn,a=65π+2πn
a=6π+2πn,a=65π+2πn
合并所有解a=2πn,a=π+2πn,a=67π+2πn,a=611π+2πn,a=6π+2πn,a=65π+2πn