解答
sin2(x)=sec(x)
解答
x∈R无解
求解步骤
sin2(x)=sec(x)
两边进行平方(sin2(x))2=sec2(x)
两边减去 sec2(x)sin4(x)−sec2(x)=0
用 sin, cos 表示
−sec2(x)+sin4(x)
使用基本三角恒等式: sec(x)=cos(x)1=−(cos(x)1)2+sin4(x)
化简 −(cos(x)1)2+sin4(x):cos2(x)−1+sin4(x)cos2(x)
−(cos(x)1)2+sin4(x)
(cos(x)1)2=cos2(x)1
(cos(x)1)2
使用指数法则: (ba)c=bcac=cos2(x)12
使用法则 1a=112=1=cos2(x)1
=−cos2(x)1+sin4(x)
将项转换为分式: sin4(x)=cos2(x)sin4(x)cos2(x)=−cos2(x)1+cos2(x)sin4(x)cos2(x)
因为分母相等,所以合并分式: ca±cb=ca±b=cos2(x)−1+sin4(x)cos2(x)
=cos2(x)−1+sin4(x)cos2(x)
cos2(x)−1+cos2(x)sin4(x)=0
g(x)f(x)=0⇒f(x)=0−1+cos2(x)sin4(x)=0
分解 −1+cos2(x)sin4(x):(sin2(x)cos(x)+1)(sin2(x)cos(x)−1)
−1+cos2(x)sin4(x)
将 −1+sin4(x)cos2(x) 改写为 −1+(sin2(x)cos(x))2
−1+sin4(x)cos2(x)
使用指数法则: abc=(ab)csin4(x)=(sin2(x))2=−1+(sin2(x))2cos2(x)
使用指数法则: ambm=(ab)m(sin2(x))2cos2(x)=(sin2(x)cos(x))2=−1+(sin2(x)cos(x))2
=−1+(sin2(x)cos(x))2
使用平方差公式: x2−y2=(x+y)(x−y)−1+(sin2(x)cos(x))2=(sin2(x)cos(x)+1)(sin2(x)cos(x)−1)=(sin2(x)cos(x)+1)(sin2(x)cos(x)−1)
(sin2(x)cos(x)+1)(sin2(x)cos(x)−1)=0
分别求解每个部分sin2(x)cos(x)+1=0orsin2(x)cos(x)−1=0
sin2(x)cos(x)+1=0:无解
sin2(x)cos(x)+1=0
使用三角恒等式改写
1+cos(x)sin2(x)
使用毕达哥拉斯恒等式: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=1+cos(x)(1−cos2(x))
1+(1−cos2(x))cos(x)=0
用替代法求解
1+(1−cos2(x))cos(x)=0
令:cos(x)=u1+(1−u2)u=0
1+(1−u2)u=0:u≈1.32471…
1+(1−u2)u=0
展开 1+(1−u2)u:1+u−u3
1+(1−u2)u
=1+u(1−u2)
乘开 u(1−u2):u−u3
u(1−u2)
使用分配律: a(b−c)=ab−aca=u,b=1,c=u2=u⋅1−uu2
=1⋅u−u2u
化简 1⋅u−u2u:u−u3
1⋅u−u2u
1⋅u=u
1⋅u
乘以:1⋅u=u=u
u2u=u3
u2u
使用指数法则: ab⋅ac=ab+cu2u=u2+1=u2+1
数字相加:2+1=3=u3
=u−u3
=u−u3
=1+u−u3
1+u−u3=0
改写成标准形式 anxn+…+a1x+a0=0−u3+u+1=0
使用牛顿-拉弗森方法找到 −u3+u+1=0 的一个解:u≈1.32471…
−u3+u+1=0
牛顿-拉弗森近似法定义
f(u)=−u3+u+1
找到 f′(u):−3u2+1
dud(−u3+u+1)
使用微分加减法定则: (f±g)′=f′±g′=−dud(u3)+dudu+dud(1)
dud(u3)=3u2
dud(u3)
使用幂法则: dxd(xa)=a⋅xa−1=3u3−1
化简=3u2
dudu=1
dudu
使用常见微分定则: dudu=1=1
dud(1)=0
dud(1)
常数微分: dxd(a)=0=0
=−3u2+1+0
化简=−3u2+1
令 u0=1计算 un+1 至 Δun+1<0.000001
u1=1.5:Δu1=0.5
f(u0)=−13+1+1=1f′(u0)=−3⋅12+1=−2u1=1.5
Δu1=∣1.5−1∣=0.5Δu1=0.5
u2=1.34782…:Δu2=0.15217…
f(u1)=−1.53+1.5+1=−0.875f′(u1)=−3⋅1.52+1=−5.75u2=1.34782…
Δu2=∣1.34782…−1.5∣=0.15217…Δu2=0.15217…
u3=1.32520…:Δu3=0.02262…
f(u2)=−1.34782…3+1.34782…+1=−0.10068…f′(u2)=−3⋅1.34782…2+1=−4.44990…u3=1.32520…
Δu3=∣1.32520…−1.34782…∣=0.02262…Δu3=0.02262…
u4=1.32471…:Δu4=0.00048…
f(u3)=−1.32520…3+1.32520…+1=−0.00205…f′(u3)=−3⋅1.32520…2+1=−4.26846…u4=1.32471…
Δu4=∣1.32471…−1.32520…∣=0.00048…Δu4=0.00048…
u5=1.32471…:Δu5=2.16754E−7
f(u4)=−1.32471…3+1.32471…+1=−9.24378E−7f′(u4)=−3⋅1.32471…2+1=−4.26463…u5=1.32471…
Δu5=∣1.32471…−1.32471…∣=2.16754E−7Δu5=2.16754E−7
u≈1.32471…
使用长除法 Equation0:u−1.32471…−u3+u+1=−u2−1.32471…u−0.75487…
−u2−1.32471…u−0.75487…≈0
使用牛顿-拉弗森方法找到 −u2−1.32471…u−0.75487…=0 的一个解:u∈R无解
−u2−1.32471…u−0.75487…=0
牛顿-拉弗森近似法定义
f(u)=−u2−1.32471…u−0.75487…
找到 f′(u):−2u−1.32471…
dud(−u2−1.32471…u−0.75487…)
使用微分加减法定则: (f±g)′=f′±g′=−dud(u2)−dud(1.32471…u)−dud(0.75487…)
dud(u2)=2u
dud(u2)
使用幂法则: dxd(xa)=a⋅xa−1=2u2−1
化简=2u
dud(1.32471…u)=1.32471…
dud(1.32471…u)
将常数提出: (a⋅f)′=a⋅f′=1.32471…dudu
使用常见微分定则: dudu=1=1.32471…⋅1
化简=1.32471…
dud(0.75487…)=0
dud(0.75487…)
常数微分: dxd(a)=0=0
=−2u−1.32471…−0
化简=−2u−1.32471…
令 u0=−1计算 un+1 至 Δun+1<0.000001
u1=−0.36299…:Δu1=0.63700…
f(u0)=−(−1)2−1.32471…(−1)−0.75487…=−0.43015…f′(u0)=−2(−1)−1.32471…=0.67528…u1=−0.36299…
Δu1=∣−0.36299…−(−1)∣=0.63700…Δu1=0.63700…
u2=−1.04072…:Δu2=0.67772…
f(u1)=−(−0.36299…)2−1.32471…(−0.36299…)−0.75487…=−0.40577…f′(u1)=−2(−0.36299…)−1.32471…=−0.59873…u2=−1.04072…
Δu2=∣−1.04072…−(−0.36299…)∣=0.67772…Δu2=0.67772…
u3=−0.43374…:Δu3=0.60697…
f(u2)=−(−1.04072…)2−1.32471…(−1.04072…)−0.75487…=−0.45931…f′(u2)=−2(−1.04072…)−1.32471…=0.75672…u3=−0.43374…
Δu3=∣−0.43374…−(−1.04072…)∣=0.60697…Δu3=0.60697…
u4=−1.23950…:Δu4=0.80576…
f(u3)=−(−0.43374…)2−1.32471…(−0.43374…)−0.75487…=−0.36842…f′(u3)=−2(−0.43374…)−1.32471…=−0.45723…u4=−1.23950…
Δu4=∣−1.23950…−(−0.43374…)∣=0.80576…Δu4=0.80576…
u5=−0.67703…:Δu5=0.56247…
f(u4)=−(−1.23950…)2−1.32471…(−1.23950…)−0.75487…=−0.64925…f′(u4)=−2(−1.23950…)−1.32471…=1.15429…u5=−0.67703…
Δu5=∣−0.67703…−(−1.23950…)∣=0.56247…Δu5=0.56247…
u6=10.09982…:Δu6=10.77686…
f(u5)=−(−0.67703…)2−1.32471…(−0.67703…)−0.75487…=−0.31637…f′(u5)=−2(−0.67703…)−1.32471…=0.02935…u6=10.09982…
Δu6=∣10.09982…−(−0.67703…)∣=10.77686…Δu6=10.77686…
u7=4.70404…:Δu7=5.39578…
f(u6)=−10.09982…2−1.32471…⋅10.09982…−0.75487…=−116.14080…f′(u6)=−2⋅10.09982…−1.32471…=−21.52437…u7=4.70404…
Δu7=∣4.70404…−10.09982…∣=5.39578…Δu7=5.39578…
u8=1.99138…:Δu8=2.71265…
f(u7)=−4.70404…2−1.32471…⋅4.70404…−0.75487…=−29.11445…f′(u7)=−2⋅4.70404…−1.32471…=−10.73280…u8=1.99138…
Δu8=∣1.99138…−4.70404…∣=2.71265…Δu8=2.71265…
u9=0.60494…:Δu9=1.38644…
f(u8)=−1.99138…2−1.32471…⋅1.99138…−0.75487…=−7.35852…f′(u8)=−2⋅1.99138…−1.32471…=−5.30749…u9=0.60494…
Δu9=∣0.60494…−1.99138…∣=1.38644…Δu9=1.38644…
u10=−0.15344…:Δu10=0.75838…
f(u9)=−0.60494…2−1.32471…⋅0.60494…−0.75487…=−1.92221…f′(u9)=−2⋅0.60494…−1.32471…=−2.53460…u10=−0.15344…
Δu10=∣−0.15344…−0.60494…∣=0.75838…Δu10=0.75838…
u11=−0.71852…:Δu11=0.56507…
f(u10)=−(−0.15344…)2−1.32471…(−0.15344…)−0.75487…=−0.57515…f′(u10)=−2(−0.15344…)−1.32471…=−1.01783…u11=−0.71852…
Δu11=∣−0.71852…−(−0.15344…)∣=0.56507…Δu11=0.56507…
u12=2.12427…:Δu12=2.84279…
f(u11)=−(−0.71852…)2−1.32471…(−0.71852…)−0.75487…=−0.31931…f′(u11)=−2(−0.71852…)−1.32471…=0.11232…u12=2.12427…
Δu12=∣2.12427…−(−0.71852…)∣=2.84279…Δu12=2.84279…
无法得出解
解是u≈1.32471…
u=cos(x)代回cos(x)≈1.32471…
cos(x)≈1.32471…
cos(x)=1.32471…:无解
cos(x)=1.32471…
−1≤cos(x)≤1无解
合并所有解无解
sin2(x)cos(x)−1=0:无解
sin2(x)cos(x)−1=0
使用三角恒等式改写
−1+cos(x)sin2(x)
使用毕达哥拉斯恒等式: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−1+cos(x)(1−cos2(x))
−1+(1−cos2(x))cos(x)=0
用替代法求解
−1+(1−cos2(x))cos(x)=0
令:cos(x)=u−1+(1−u2)u=0
−1+(1−u2)u=0:u≈−1.32471…
−1+(1−u2)u=0
展开 −1+(1−u2)u:−1+u−u3
−1+(1−u2)u
=−1+u(1−u2)
乘开 u(1−u2):u−u3
u(1−u2)
使用分配律: a(b−c)=ab−aca=u,b=1,c=u2=u⋅1−uu2
=1⋅u−u2u
化简 1⋅u−u2u:u−u3
1⋅u−u2u
1⋅u=u
1⋅u
乘以:1⋅u=u=u
u2u=u3
u2u
使用指数法则: ab⋅ac=ab+cu2u=u2+1=u2+1
数字相加:2+1=3=u3
=u−u3
=u−u3
=−1+u−u3
−1+u−u3=0
改写成标准形式 anxn+…+a1x+a0=0−u3+u−1=0
使用牛顿-拉弗森方法找到 −u3+u−1=0 的一个解:u≈−1.32471…
−u3+u−1=0
牛顿-拉弗森近似法定义
f(u)=−u3+u−1
找到 f′(u):−3u2+1
dud(−u3+u−1)
使用微分加减法定则: (f±g)′=f′±g′=−dud(u3)+dudu−dud(1)
dud(u3)=3u2
dud(u3)
使用幂法则: dxd(xa)=a⋅xa−1=3u3−1
化简=3u2
dudu=1
dudu
使用常见微分定则: dudu=1=1
dud(1)=0
dud(1)
常数微分: dxd(a)=0=0
=−3u2+1−0
化简=−3u2+1
令 u0=−1计算 un+1 至 Δun+1<0.000001
u1=−1.5:Δu1=0.5
f(u0)=−(−1)3+(−1)−1=−1f′(u0)=−3(−1)2+1=−2u1=−1.5
Δu1=∣−1.5−(−1)∣=0.5Δu1=0.5
u2=−1.34782…:Δu2=0.15217…
f(u1)=−(−1.5)3+(−1.5)−1=0.875f′(u1)=−3(−1.5)2+1=−5.75u2=−1.34782…
Δu2=∣−1.34782…−(−1.5)∣=0.15217…Δu2=0.15217…
u3=−1.32520…:Δu3=0.02262…
f(u2)=−(−1.34782…)3+(−1.34782…)−1=0.10068…f′(u2)=−3(−1.34782…)2+1=−4.44990…u3=−1.32520…
Δu3=∣−1.32520…−(−1.34782…)∣=0.02262…Δu3=0.02262…
u4=−1.32471…:Δu4=0.00048…
f(u3)=−(−1.32520…)3+(−1.32520…)−1=0.00205…f′(u3)=−3(−1.32520…)2+1=−4.26846…u4=−1.32471…
Δu4=∣−1.32471…−(−1.32520…)∣=0.00048…Δu4=0.00048…
u5=−1.32471…:Δu5=2.16754E−7
f(u4)=−(−1.32471…)3+(−1.32471…)−1=9.24378E−7f′(u4)=−3(−1.32471…)2+1=−4.26463…u5=−1.32471…
Δu5=∣−1.32471…−(−1.32471…)∣=2.16754E−7Δu5=2.16754E−7
u≈−1.32471…
使用长除法 Equation0:u+1.32471…−u3+u−1=−u2+1.32471…u−0.75487…
−u2+1.32471…u−0.75487…≈0
使用牛顿-拉弗森方法找到 −u2+1.32471…u−0.75487…=0 的一个解:u∈R无解
−u2+1.32471…u−0.75487…=0
牛顿-拉弗森近似法定义
f(u)=−u2+1.32471…u−0.75487…
找到 f′(u):−2u+1.32471…
dud(−u2+1.32471…u−0.75487…)
使用微分加减法定则: (f±g)′=f′±g′=−dud(u2)+dud(1.32471…u)−dud(0.75487…)
dud(u2)=2u
dud(u2)
使用幂法则: dxd(xa)=a⋅xa−1=2u2−1
化简=2u
dud(1.32471…u)=1.32471…
dud(1.32471…u)
将常数提出: (a⋅f)′=a⋅f′=1.32471…dudu
使用常见微分定则: dudu=1=1.32471…⋅1
化简=1.32471…
dud(0.75487…)=0
dud(0.75487…)
常数微分: dxd(a)=0=0
=−2u+1.32471…−0
化简=−2u+1.32471…
令 u0=1计算 un+1 至 Δun+1<0.000001
u1=0.36299…:Δu1=0.63700…
f(u0)=−12+1.32471…⋅1−0.75487…=−0.43015…f′(u0)=−2⋅1+1.32471…=−0.67528…u1=0.36299…
Δu1=∣0.36299…−1∣=0.63700…Δu1=0.63700…
u2=1.04072…:Δu2=0.67772…
f(u1)=−0.36299…2+1.32471…⋅0.36299…−0.75487…=−0.40577…f′(u1)=−2⋅0.36299…+1.32471…=0.59873…u2=1.04072…
Δu2=∣1.04072…−0.36299…∣=0.67772…Δu2=0.67772…
u3=0.43374…:Δu3=0.60697…
f(u2)=−1.04072…2+1.32471…⋅1.04072…−0.75487…=−0.45931…f′(u2)=−2⋅1.04072…+1.32471…=−0.75672…u3=0.43374…
Δu3=∣0.43374…−1.04072…∣=0.60697…Δu3=0.60697…
u4=1.23950…:Δu4=0.80576…
f(u3)=−0.43374…2+1.32471…⋅0.43374…−0.75487…=−0.36842…f′(u3)=−2⋅0.43374…+1.32471…=0.45723…u4=1.23950…
Δu4=∣1.23950…−0.43374…∣=0.80576…Δu4=0.80576…
u5=0.67703…:Δu5=0.56247…
f(u4)=−1.23950…2+1.32471…⋅1.23950…−0.75487…=−0.64925…f′(u4)=−2⋅1.23950…+1.32471…=−1.15429…u5=0.67703…
Δu5=∣0.67703…−1.23950…∣=0.56247…Δu5=0.56247…
u6=−10.09982…:Δu6=10.77686…
f(u5)=−0.67703…2+1.32471…⋅0.67703…−0.75487…=−0.31637…f′(u5)=−2⋅0.67703…+1.32471…=−0.02935…u6=−10.09982…
Δu6=∣−10.09982…−0.67703…∣=10.77686…Δu6=10.77686…
u7=−4.70404…:Δu7=5.39578…
f(u6)=−(−10.09982…)2+1.32471…(−10.09982…)−0.75487…=−116.14080…f′(u6)=−2(−10.09982…)+1.32471…=21.52437…u7=−4.70404…
Δu7=∣−4.70404…−(−10.09982…)∣=5.39578…Δu7=5.39578…
u8=−1.99138…:Δu8=2.71265…
f(u7)=−(−4.70404…)2+1.32471…(−4.70404…)−0.75487…=−29.11445…f′(u7)=−2(−4.70404…)+1.32471…=10.73280…u8=−1.99138…
Δu8=∣−1.99138…−(−4.70404…)∣=2.71265…Δu8=2.71265…
u9=−0.60494…:Δu9=1.38644…
f(u8)=−(−1.99138…)2+1.32471…(−1.99138…)−0.75487…=−7.35852…f′(u8)=−2(−1.99138…)+1.32471…=5.30749…u9=−0.60494…
Δu9=∣−0.60494…−(−1.99138…)∣=1.38644…Δu9=1.38644…
u10=0.15344…:Δu10=0.75838…
f(u9)=−(−0.60494…)2+1.32471…(−0.60494…)−0.75487…=−1.92221…f′(u9)=−2(−0.60494…)+1.32471…=2.53460…u10=0.15344…
Δu10=∣0.15344…−(−0.60494…)∣=0.75838…Δu10=0.75838…
u11=0.71852…:Δu11=0.56507…
f(u10)=−0.15344…2+1.32471…⋅0.15344…−0.75487…=−0.57515…f′(u10)=−2⋅0.15344…+1.32471…=1.01783…u11=0.71852…
Δu11=∣0.71852…−0.15344…∣=0.56507…Δu11=0.56507…
u12=−2.12427…:Δu12=2.84279…
f(u11)=−0.71852…2+1.32471…⋅0.71852…−0.75487…=−0.31931…f′(u11)=−2⋅0.71852…+1.32471…=−0.11232…u12=−2.12427…
Δu12=∣−2.12427…−0.71852…∣=2.84279…Δu12=2.84279…
无法得出解
解是u≈−1.32471…
u=cos(x)代回cos(x)≈−1.32471…
cos(x)≈−1.32471…
cos(x)=−1.32471…:无解
cos(x)=−1.32471…
−1≤cos(x)≤1无解
合并所有解无解
合并所有解无解
将解代入原方程进行验证
将它们代入 sin2(x)=sec(x)检验解是否符合
去除与方程不符的解。
x∈R无解