解答
cos2(45∘−a)−sin2(45∘−a)=sin2(a)
解答
a=360∘n,a=180∘+360∘n,a=1.10714…+180∘n
+1
弧度
a=0+2πn,a=π+2πn,a=1.10714…+πn求解步骤
cos2(45∘−a)−sin2(45∘−a)=sin2(a)
使用三角恒等式改写
cos2(45∘−a)−sin2(45∘−a)=sin2(a)
使用三角恒等式改写
sin(45∘−a)
使用角差恒等式: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(45∘)cos(a)−cos(45∘)sin(a)
化简 sin(45∘)cos(a)−cos(45∘)sin(a):22cos(a)−2sin(a)
sin(45∘)cos(a)−cos(45∘)sin(a)
sin(45∘)cos(a)=22cos(a)
sin(45∘)cos(a)
化简 sin(45∘):22
sin(45∘)
使用以下普通恒等式:sin(45∘)=22
sin(x) 周期表(周期为 360∘n"):
x030∘45∘60∘90∘120∘135∘150∘sin(x)02122231232221x180∘210∘225∘240∘270∘300∘315∘330∘sin(x)0−21−22−23−1−23−22−21
=22=22cos(a)
分式相乘: a⋅cb=ca⋅b=22cos(a)
cos(45∘)sin(a)=22sin(a)
cos(45∘)sin(a)
化简 cos(45∘):22
cos(45∘)
使用以下普通恒等式:cos(45∘)=22
cos(x) 周期表(周期为 360∘n):
x030∘45∘60∘90∘120∘135∘150∘cos(x)12322210−21−22−23x180∘210∘225∘240∘270∘300∘315∘330∘cos(x)−1−23−22−210212223
=22=22sin(a)
分式相乘: a⋅cb=ca⋅b=22sin(a)
=22cos(a)−22sin(a)
使用法则 ca±cb=ca±b=22cos(a)−2sin(a)
=22cos(a)−2sin(a)
使用角差恒等式: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(45∘)cos(a)+sin(45∘)sin(a)
化简 cos(45∘)cos(a)+sin(45∘)sin(a):22cos(a)+2sin(a)
cos(45∘)cos(a)+sin(45∘)sin(a)
cos(45∘)cos(a)=22cos(a)
cos(45∘)cos(a)
化简 cos(45∘):22
cos(45∘)
使用以下普通恒等式:cos(45∘)=22
cos(x) 周期表(周期为 360∘n):
x030∘45∘60∘90∘120∘135∘150∘cos(x)12322210−21−22−23x180∘210∘225∘240∘270∘300∘315∘330∘cos(x)−1−23−22−210212223
=22=22cos(a)
分式相乘: a⋅cb=ca⋅b=22cos(a)
sin(45∘)sin(a)=22sin(a)
sin(45∘)sin(a)
化简 sin(45∘):22
sin(45∘)
使用以下普通恒等式:sin(45∘)=22
sin(x) 周期表(周期为 360∘n"):
x030∘45∘60∘90∘120∘135∘150∘sin(x)02122231232221x180∘210∘225∘240∘270∘300∘315∘330∘sin(x)0−21−22−23−1−23−22−21
=22=22sin(a)
分式相乘: a⋅cb=ca⋅b=22sin(a)
=22cos(a)+22sin(a)
使用法则 ca±cb=ca±b=22cos(a)+2sin(a)
=22cos(a)+2sin(a)
(22cos(a)+2sin(a))2−(22cos(a)−2sin(a))2=sin2(a)
化简 (22cos(a)+2sin(a))2−(22cos(a)−2sin(a))2:2cos(a)sin(a)
(22cos(a)+2sin(a))2−(22cos(a)−2sin(a))2
(22cos(a)+2sin(a))2=2(cos(a)+sin(a))2
(22cos(a)+2sin(a))2
22cos(a)+2sin(a)=2cos(a)+sin(a)
22cos(a)+2sin(a)
因式分解出通项 2=22(cos(a)+sin(a))
消掉 22(cos(a)+sin(a)):2cos(a)+sin(a)
22(cos(a)+sin(a))
使用根式运算法则: na=an12=221=2221(cos(a)+sin(a))
使用指数法则: xbxa=xb−a121221=21−211=21−21cos(a)+sin(a)
数字相减:1−21=21=221cos(a)+sin(a)
使用根式运算法则: an1=na221=2=2cos(a)+sin(a)
=2cos(a)+sin(a)
=(2cos(a)+sin(a))2
使用指数法则: (ba)c=bcac=(2)2(cos(a)+sin(a))2
(2)2:2
使用根式运算法则: a=a21=(221)2
使用指数法则: (ab)c=abc=221⋅2
21⋅2=1
21⋅2
分式相乘: a⋅cb=ca⋅b=21⋅2
约分:2=1
=2
=2(cos(a)+sin(a))2
(22cos(a)−2sin(a))2=2(cos(a)−sin(a))2
(22cos(a)−2sin(a))2
22cos(a)−2sin(a)=2cos(a)−sin(a)
22cos(a)−2sin(a)
因式分解出通项 2=22(cos(a)−sin(a))
消掉 22(cos(a)−sin(a)):2cos(a)−sin(a)
22(cos(a)−sin(a))
使用根式运算法则: na=an12=221=2221(cos(a)−sin(a))
使用指数法则: xbxa=xb−a121221=21−211=21−21cos(a)−sin(a)
数字相减:1−21=21=221cos(a)−sin(a)
使用根式运算法则: an1=na221=2=2cos(a)−sin(a)
=2cos(a)−sin(a)
=(2cos(a)−sin(a))2
使用指数法则: (ba)c=bcac=(2)2(cos(a)−sin(a))2
(2)2:2
使用根式运算法则: a=a21=(221)2
使用指数法则: (ab)c=abc=221⋅2
21⋅2=1
21⋅2
分式相乘: a⋅cb=ca⋅b=21⋅2
约分:2=1
=2
=2(cos(a)−sin(a))2
=2(cos(a)+sin(a))2−2(cos(a)−sin(a))2
使用法则 ca±cb=ca±b=2(cos(a)+sin(a))2−(cos(a)−sin(a))2
乘开 (cos(a)+sin(a))2−(cos(a)−sin(a))2:4cos(a)sin(a)
(cos(a)+sin(a))2−(cos(a)−sin(a))2
(cos(a)+sin(a))2:cos2(a)+2cos(a)sin(a)+sin2(a)
使用完全平方公式: (a+b)2=a2+2ab+b2a=cos(a),b=sin(a)
=cos2(a)+2cos(a)sin(a)+sin2(a)
=cos2(a)+2cos(a)sin(a)+sin2(a)−(cos(a)−sin(a))2
(cos(a)−sin(a))2:cos2(a)−2cos(a)sin(a)+sin2(a)
使用完全平方公式: (a−b)2=a2−2ab+b2a=cos(a),b=sin(a)
=cos2(a)−2cos(a)sin(a)+sin2(a)
=cos2(a)+2cos(a)sin(a)+sin2(a)−(cos2(a)−2cos(a)sin(a)+sin2(a))
−(cos2(a)−2cos(a)sin(a)+sin2(a)):−cos2(a)+2cos(a)sin(a)−sin2(a)
−(cos2(a)−2cos(a)sin(a)+sin2(a))
打开括号=−(cos2(a))−(−2cos(a)sin(a))−(sin2(a))
使用加减运算法则−(−a)=a,−(a)=−a=−cos2(a)+2cos(a)sin(a)−sin2(a)
=cos2(a)+2cos(a)sin(a)+sin2(a)−cos2(a)+2cos(a)sin(a)−sin2(a)
化简 cos2(a)+2cos(a)sin(a)+sin2(a)−cos2(a)+2cos(a)sin(a)−sin2(a):4cos(a)sin(a)
cos2(a)+2cos(a)sin(a)+sin2(a)−cos2(a)+2cos(a)sin(a)−sin2(a)
同类项相加:2cos(a)sin(a)+2cos(a)sin(a)=4cos(a)sin(a)=cos2(a)+4cos(a)sin(a)+sin2(a)−cos2(a)−sin2(a)
同类项相加:cos2(a)−cos2(a)=0=4cos(a)sin(a)+sin2(a)−sin2(a)
同类项相加:sin2(a)−sin2(a)=0=4cos(a)sin(a)
=4cos(a)sin(a)
=24cos(a)sin(a)
数字相除:24=2=2cos(a)sin(a)
2cos(a)sin(a)=sin2(a)
2cos(a)sin(a)=sin2(a)
两边减去 sin2(a)2cos(a)sin(a)−sin2(a)=0
分解 2cos(a)sin(a)−sin2(a):sin(a)(2cos(a)−sin(a))
2cos(a)sin(a)−sin2(a)
使用指数法则: ab+c=abacsin2(a)=sin(a)sin(a)=2sin(a)cos(a)−sin(a)sin(a)
因式分解出通项 sin(a)=sin(a)(2cos(a)−sin(a))
sin(a)(2cos(a)−sin(a))=0
分别求解每个部分sin(a)=0or2cos(a)−sin(a)=0
sin(a)=0:a=360∘n,a=180∘+360∘n
sin(a)=0
sin(a)=0的通解
sin(x) 周期表(周期为 360∘n"):
x030∘45∘60∘90∘120∘135∘150∘sin(x)02122231232221x180∘210∘225∘240∘270∘300∘315∘330∘sin(x)0−21−22−23−1−23−22−21
a=0+360∘n,a=180∘+360∘n
a=0+360∘n,a=180∘+360∘n
解 a=0+360∘n:a=360∘n
a=0+360∘n
0+360∘n=360∘na=360∘n
a=360∘n,a=180∘+360∘n
2cos(a)−sin(a)=0:a=arctan(2)+180∘n
2cos(a)−sin(a)=0
使用三角恒等式改写
2cos(a)−sin(a)=0
在两边除以 cos(a),cos(a)=0cos(a)2cos(a)−sin(a)=cos(a)0
化简2−cos(a)sin(a)=0
使用基本三角恒等式: cos(x)sin(x)=tan(x)2−tan(a)=0
2−tan(a)=0
将 2到右边
2−tan(a)=0
两边减去 22−tan(a)−2=0−2
化简−tan(a)=−2
−tan(a)=−2
两边除以 −1
−tan(a)=−2
两边除以 −1−1−tan(a)=−1−2
化简tan(a)=2
tan(a)=2
使用反三角函数性质
tan(a)=2
tan(a)=2的通解tan(x)=a⇒x=arctan(a)+180∘na=arctan(2)+180∘n
a=arctan(2)+180∘n
合并所有解a=360∘n,a=180∘+360∘n,a=arctan(2)+180∘n
以小数形式表示解a=360∘n,a=180∘+360∘n,a=1.10714…+180∘n