解答
sin5(x)+sin(x)+2sin2(x)=1
解答
x=0.51263…+2πn,x=π−0.51263…+2πn
+1
度数
x=29.37198…∘+360∘n,x=150.62801…∘+360∘n求解步骤
sin5(x)+sin(x)+2sin2(x)=1
用替代法求解
sin5(x)+sin(x)+2sin2(x)=1
令:sin(x)=uu5+u+2u2=1
u5+u+2u2=1:u≈0.49047…
u5+u+2u2=1
将 1para o lado esquerdo
u5+u+2u2=1
两边减去 1u5+u+2u2−1=1−1
化简u5+u+2u2−1=0
u5+u+2u2−1=0
改写成标准形式 anxn+…+a1x+a0=0u5+2u2+u−1=0
使用牛顿-拉弗森方法找到 u5+2u2+u−1=0 的一个解:u≈0.49047…
u5+2u2+u−1=0
牛顿-拉弗森近似法定义
f(u)=u5+2u2+u−1
找到 f′(u):5u4+4u+1
dud(u5+2u2+u−1)
使用微分加减法定则: (f±g)′=f′±g′=dud(u5)+dud(2u2)+dudu−dud(1)
dud(u5)=5u4
dud(u5)
使用幂法则: dxd(xa)=a⋅xa−1=5u5−1
化简=5u4
dud(2u2)=4u
dud(2u2)
将常数提出: (a⋅f)′=a⋅f′=2dud(u2)
使用幂法则: dxd(xa)=a⋅xa−1=2⋅2u2−1
化简=4u
dudu=1
dudu
使用常见微分定则: dudu=1=1
dud(1)=0
dud(1)
常数微分: dxd(a)=0=0
=5u4+4u+1−0
化简=5u4+4u+1
令 u0=1计算 un+1 至 Δun+1<0.000001
u1=0.7:Δu1=0.3
f(u0)=15+2⋅12+1−1=3f′(u0)=5⋅14+4⋅1+1=10u1=0.7
Δu1=∣0.7−1∣=0.3Δu1=0.3
u2=0.53040…:Δu2=0.16959…
f(u1)=0.75+2⋅0.72+0.7−1=0.84807f′(u1)=5⋅0.74+4⋅0.7+1=5.0005u2=0.53040…
Δu2=∣0.53040…−0.7∣=0.16959…Δu2=0.16959…
u3=0.49201…:Δu3=0.03839…
f(u2)=0.53040…5+2⋅0.53040…2+0.53040…−1=0.13503…f′(u2)=5⋅0.53040…4+4⋅0.53040…+1=3.51733…u3=0.49201…
Δu3=∣0.49201…−0.53040…∣=0.03839…Δu3=0.03839…
u4=0.49048…:Δu4=0.00153…
f(u3)=0.49201…5+2⋅0.49201…2+0.49201…−1=0.00499…f′(u3)=5⋅0.49201…4+4⋅0.49201…+1=3.26104…u4=0.49048…
Δu4=∣0.49048…−0.49201…∣=0.00153…Δu4=0.00153…
u5=0.49047…:Δu5=2.29877E−6
f(u4)=0.49048…5+2⋅0.49048…2+0.49048…−1=7.47396E−6f′(u4)=5⋅0.49048…4+4⋅0.49048…+1=3.25129…u5=0.49047…
Δu5=∣0.49047…−0.49048…∣=2.29877E−6Δu5=2.29877E−6
u6=0.49047…:Δu6=5.1684E−12
f(u5)=0.49047…5+2⋅0.49047…2+0.49047…−1=1.68039E−11f′(u5)=5⋅0.49047…4+4⋅0.49047…+1=3.25127…u6=0.49047…
Δu6=∣0.49047…−0.49047…∣=5.1684E−12Δu6=5.1684E−12
u≈0.49047…
使用长除法 Equation0:u−0.49047…u5+2u2+u−1=u4+0.49047…u3+0.24056…u2+2.11799…u+2.03882…
u4+0.49047…u3+0.24056…u2+2.11799…u+2.03882…≈0
使用牛顿-拉弗森方法找到 u4+0.49047…u3+0.24056…u2+2.11799…u+2.03882…=0 的一个解:u∈R无解
u4+0.49047…u3+0.24056…u2+2.11799…u+2.03882…=0
牛顿-拉弗森近似法定义
f(u)=u4+0.49047…u3+0.24056…u2+2.11799…u+2.03882…
找到 f′(u):4u3+1.47143…u2+0.48113…u+2.11799…
dud(u4+0.49047…u3+0.24056…u2+2.11799…u+2.03882…)
使用微分加减法定则: (f±g)′=f′±g′=dud(u4)+dud(0.49047…u3)+dud(0.24056…u2)+dud(2.11799…u)+dud(2.03882…)
dud(u4)=4u3
dud(u4)
使用幂法则: dxd(xa)=a⋅xa−1=4u4−1
化简=4u3
dud(0.49047…u3)=1.47143…u2
dud(0.49047…u3)
将常数提出: (a⋅f)′=a⋅f′=0.49047…dud(u3)
使用幂法则: dxd(xa)=a⋅xa−1=0.49047…⋅3u3−1
化简=1.47143…u2
dud(0.24056…u2)=0.48113…u
dud(0.24056…u2)
将常数提出: (a⋅f)′=a⋅f′=0.24056…dud(u2)
使用幂法则: dxd(xa)=a⋅xa−1=0.24056…⋅2u2−1
化简=0.48113…u
dud(2.11799…u)=2.11799…
dud(2.11799…u)
将常数提出: (a⋅f)′=a⋅f′=2.11799…dudu
使用常见微分定则: dudu=1=2.11799…⋅1
化简=2.11799…
dud(2.03882…)=0
dud(2.03882…)
常数微分: dxd(a)=0=0
=4u3+1.47143…u2+0.48113…u+2.11799…+0
化简=4u3+1.47143…u2+0.48113…u+2.11799…
令 u0=−1计算 un+1 至 Δun+1<0.000001
u1=−0.24759…:Δu1=0.75240…
f(u0)=(−1)4+0.49047…(−1)3+0.24056…(−1)2+2.11799…(−1)+2.03882…=0.67092…f′(u0)=4(−1)3+1.47143…(−1)2+0.48113…(−1)+2.11799…=−0.89171…u1=−0.24759…
Δu1=∣−0.24759…−(−1)∣=0.75240…Δu1=0.75240…
u2=−0.99967…:Δu2=0.75207…
f(u1)=(−0.24759…)4+0.49047…(−0.24759…)3+0.24056…(−0.24759…)2+2.11799…(−0.24759…)+2.03882…=1.52548…f′(u1)=4(−0.24759…)3+1.47143…(−0.24759…)2+0.48113…(−0.24759…)+2.11799…=2.02835…u2=−0.99967…
Δu2=∣−0.99967…−(−0.24759…)∣=0.75207…Δu2=0.75207…
u3=−0.24497…:Δu3=0.75470…
f(u2)=(−0.99967…)4+0.49047…(−0.99967…)3+0.24056…(−0.99967…)2+2.11799…(−0.99967…)+2.03882…=0.67063…f′(u2)=4(−0.99967…)3+1.47143…(−0.99967…)2+0.48113…(−0.99967…)+2.11799…=−0.88860…u3=−0.24497…
Δu3=∣−0.24497…−(−0.99967…)∣=0.75470…Δu3=0.75470…
u4=−0.99920…:Δu4=0.75423…
f(u3)=(−0.24497…)4+0.49047…(−0.24497…)3+0.24056…(−0.24497…)2+2.11799…(−0.24497…)+2.03882…=1.53081…f′(u3)=4(−0.24497…)3+1.47143…(−0.24497…)2+0.48113…(−0.24497…)+2.11799…=2.02962…u4=−0.99920…
Δu4=∣−0.99920…−(−0.24497…)∣=0.75423…Δu4=0.75423…
u5=−0.24113…:Δu5=0.75806…
f(u4)=(−0.99920…)4+0.49047…(−0.99920…)3+0.24056…(−0.99920…)2+2.11799…(−0.99920…)+2.03882…=0.67021…f′(u4)=4(−0.99920…)3+1.47143…(−0.99920…)2+0.48113…(−0.99920…)+2.11799…=−0.88411…u5=−0.24113…
Δu5=∣−0.24113…−(−0.99920…)∣=0.75806…Δu5=0.75806…
u6=−0.99852…:Δu6=0.75739…
f(u5)=(−0.24113…)4+0.49047…(−0.24113…)3+0.24056…(−0.24113…)2+2.11799…(−0.24113…)+2.03882…=1.53860…f′(u5)=4(−0.24113…)3+1.47143…(−0.24113…)2+0.48113…(−0.24113…)+2.11799…=2.03144…u6=−0.99852…
Δu6=∣−0.99852…−(−0.24113…)∣=0.75739…Δu6=0.75739…
u7=−0.23556…:Δu7=0.76296…
f(u6)=(−0.99852…)4+0.49047…(−0.99852…)3+0.24056…(−0.99852…)2+2.11799…(−0.99852…)+2.03882…=0.66962…f′(u6)=4(−0.99852…)3+1.47143…(−0.99852…)2+0.48113…(−0.99852…)+2.11799…=−0.87765…u7=−0.23556…
Δu7=∣−0.23556…−(−0.99852…)∣=0.76296…Δu7=0.76296…
u8=−0.99756…:Δu8=0.76200…
f(u7)=(−0.23556…)4+0.49047…(−0.23556…)3+0.24056…(−0.23556…)2+2.11799…(−0.23556…)+2.03882…=1.54992…f′(u7)=4(−0.23556…)3+1.47143…(−0.23556…)2+0.48113…(−0.23556…)+2.11799…=2.03401…u8=−0.99756…
Δu8=∣−0.99756…−(−0.23556…)∣=0.76200…Δu8=0.76200…
u9=−0.22755…:Δu9=0.77001…
f(u8)=(−0.99756…)4+0.49047…(−0.99756…)3+0.24056…(−0.99756…)2+2.11799…(−0.99756…)+2.03882…=0.66878…f′(u8)=4(−0.99756…)3+1.47143…(−0.99756…)2+0.48113…(−0.99756…)+2.11799…=−0.86853…u9=−0.22755…
Δu9=∣−0.22755…−(−0.99756…)∣=0.77001…Δu9=0.77001…
无法得出解
解是u≈0.49047…
u=sin(x)代回sin(x)≈0.49047…
sin(x)≈0.49047…
sin(x)=0.49047…:x=arcsin(0.49047…)+2πn,x=π−arcsin(0.49047…)+2πn
sin(x)=0.49047…
使用反三角函数性质
sin(x)=0.49047…
sin(x)=0.49047…的通解sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(0.49047…)+2πn,x=π−arcsin(0.49047…)+2πn
x=arcsin(0.49047…)+2πn,x=π−arcsin(0.49047…)+2πn
合并所有解x=arcsin(0.49047…)+2πn,x=π−arcsin(0.49047…)+2πn
以小数形式表示解x=0.51263…+2πn,x=π−0.51263…+2πn