解答
sin4(x)=−cos(x)
解答
x=π−1.01821…+2πn,x=π+1.01821…+2πn
+1
度数
x=121.66074…∘+360∘n,x=238.33925…∘+360∘n求解步骤
sin4(x)=−cos(x)
两边进行平方(sin4(x))2=(−cos(x))2
两边减去 (−cos(x))2sin8(x)−cos2(x)=0
使用三角恒等式改写
−cos2(x)+sin8(x)
使用毕达哥拉斯恒等式: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−(1−sin2(x))+sin8(x)
−(1−sin2(x)):−1+sin2(x)
−(1−sin2(x))
打开括号=−(1)−(−sin2(x))
使用加减运算法则−(−a)=a,−(a)=−a=−1+sin2(x)
=−1+sin2(x)+sin8(x)
−1+sin2(x)+sin8(x)=0
用替代法求解
−1+sin2(x)+sin8(x)=0
令:sin(x)=u−1+u2+u8=0
−1+u2+u8=0:u=0.72449…,u=−0.72449…
−1+u2+u8=0
改写成标准形式 anxn+…+a1x+a0=0u8+u2−1=0
用v=u2 和 v4=u8改写方程式v4+v−1=0
解 v4+v−1=0:v≈0.72449…,v≈−1.22074…
v4+v−1=0
使用牛顿-拉弗森方法找到 v4+v−1=0 的一个解:v≈0.72449…
v4+v−1=0
牛顿-拉弗森近似法定义
f(v)=v4+v−1
找到 f′(v):4v3+1
dvd(v4+v−1)
使用微分加减法定则: (f±g)′=f′±g′=dvd(v4)+dvdv−dvd(1)
dvd(v4)=4v3
dvd(v4)
使用幂法则: dxd(xa)=a⋅xa−1=4v4−1
化简=4v3
dvdv=1
dvdv
使用常见微分定则: dvdv=1=1
dvd(1)=0
dvd(1)
常数微分: dxd(a)=0=0
=4v3+1−0
化简=4v3+1
令 v0=1计算 vn+1 至 Δvn+1<0.000001
v1=0.8:Δv1=0.2
f(v0)=14+1−1=1f′(v0)=4⋅13+1=5v1=0.8
Δv1=∣0.8−1∣=0.2Δv1=0.2
v2=0.73123…:Δv2=0.06876…
f(v1)=0.84+0.8−1=0.2096f′(v1)=4⋅0.83+1=3.048v2=0.73123…
Δv2=∣0.73123…−0.8∣=0.06876…Δv2=0.06876…
v3=0.72454…:Δv3=0.00668…
f(v2)=0.73123…4+0.73123…−1=0.01714…f′(v2)=4⋅0.73123…3+1=2.56396…v3=0.72454…
Δv3=∣0.72454…−0.73123…∣=0.00668…Δv3=0.00668…
v4=0.72449…:Δv4=0.00005…
f(v3)=0.72454…4+0.72454…−1=0.00014…f′(v3)=4⋅0.72454…3+1=2.52146…v4=0.72449…
Δv4=∣0.72449…−0.72454…∣=0.00005…Δv4=0.00005…
v5=0.72449…:Δv5=3.99053E−9
f(v4)=0.72449…4+0.72449…−1=1.00606E−8f′(v4)=4⋅0.72449…3+1=2.52111…v5=0.72449…
Δv5=∣0.72449…−0.72449…∣=3.99053E−9Δv5=3.99053E−9
v≈0.72449…
使用长除法 Equation0:v−0.72449…v4+v−1=v3+0.72449…v2+0.52488…v+1.38027…
v3+0.72449…v2+0.52488…v+1.38027…≈0
使用牛顿-拉弗森方法找到 v3+0.72449…v2+0.52488…v+1.38027…=0 的一个解:v≈−1.22074…
v3+0.72449…v2+0.52488…v+1.38027…=0
牛顿-拉弗森近似法定义
f(v)=v3+0.72449…v2+0.52488…v+1.38027…
找到 f′(v):3v2+1.44898…v+0.52488…
dvd(v3+0.72449…v2+0.52488…v+1.38027…)
使用微分加减法定则: (f±g)′=f′±g′=dvd(v3)+dvd(0.72449…v2)+dvd(0.52488…v)+dvd(1.38027…)
dvd(v3)=3v2
dvd(v3)
使用幂法则: dxd(xa)=a⋅xa−1=3v3−1
化简=3v2
dvd(0.72449…v2)=1.44898…v
dvd(0.72449…v2)
将常数提出: (a⋅f)′=a⋅f′=0.72449…dvd(v2)
使用幂法则: dxd(xa)=a⋅xa−1=0.72449…⋅2v2−1
化简=1.44898…v
dvd(0.52488…v)=0.52488…
dvd(0.52488…v)
将常数提出: (a⋅f)′=a⋅f′=0.52488…dvdv
使用常见微分定则: dvdv=1=0.52488…⋅1
化简=0.52488…
dvd(1.38027…)=0
dvd(1.38027…)
常数微分: dxd(a)=0=0
=3v2+1.44898…v+0.52488…+0
化简=3v2+1.44898…v+0.52488…
令 v0=−3计算 vn+1 至 Δvn+1<0.000001
v1=−2.10803…:Δv1=0.89196…
f(v0)=(−3)3+0.72449…(−3)2+0.52488…(−3)+1.38027…=−20.67396…f′(v0)=3(−3)2+1.44898…(−3)+0.52488…=23.17793…v1=−2.10803…
Δv1=∣−2.10803…−(−3)∣=0.89196…Δv1=0.89196…
v2=−1.56419…:Δv2=0.54383…
f(v1)=(−2.10803…)3+0.72449…(−2.10803…)2+0.52488…(−2.10803…)+1.38027…=−5.87438…f′(v1)=3(−2.10803…)2+1.44898…(−2.10803…)+0.52488…=10.80178…v2=−1.56419…
Δv2=∣−1.56419…−(−2.10803…)∣=0.54383…Δv2=0.54383…
v3=−1.29711…:Δv3=0.26708…
f(v2)=(−1.56419…)3+0.72449…(−1.56419…)2+0.52488…(−1.56419…)+1.38027…=−1.49527…f′(v2)=3(−1.56419…)2+1.44898…(−1.56419…)+0.52488…=5.59853…v3=−1.29711…
Δv3=∣−1.29711…−(−1.56419…)∣=0.26708…Δv3=0.26708…
v4=−1.22562…:Δv4=0.07148…
f(v3)=(−1.29711…)3+0.72449…(−1.29711…)2+0.52488…(−1.29711…)+1.38027…=−0.26400…f′(v3)=3(−1.29711…)2+1.44898…(−1.29711…)+0.52488…=3.69291…v4=−1.22562…
Δv4=∣−1.22562…−(−1.29711…)∣=0.07148…Δv4=0.07148…
v5=−1.22076…:Δv5=0.00485…
f(v4)=(−1.22562…)3+0.72449…(−1.22562…)2+0.52488…(−1.22562…)+1.38027…=−0.01581…f′(v4)=3(−1.22562…)2+1.44898…(−1.22562…)+0.52488…=3.25544…v5=−1.22076…
Δv5=∣−1.22076…−(−1.22562…)∣=0.00485…Δv5=0.00485…
v6=−1.22074…:Δv6=0.00002…
f(v5)=(−1.22076…)3+0.72449…(−1.22076…)2+0.52488…(−1.22076…)+1.38027…=−0.00006…f′(v5)=3(−1.22076…)2+1.44898…(−1.22076…)+0.52488…=3.22682…v6=−1.22074…
Δv6=∣−1.22074…−(−1.22076…)∣=0.00002…Δv6=0.00002…
v7=−1.22074…:Δv7=4.23633E−10
f(v6)=(−1.22074…)3+0.72449…(−1.22074…)2+0.52488…(−1.22074…)+1.38027…=−1.36693E−9f′(v6)=3(−1.22074…)2+1.44898…(−1.22074…)+0.52488…=3.22669…v7=−1.22074…
Δv7=∣−1.22074…−(−1.22074…)∣=4.23633E−10Δv7=4.23633E−10
v≈−1.22074…
使用长除法 Equation0:v+1.22074…v3+0.72449…v2+0.52488…v+1.38027…=v2−0.49625…v+1.13068…
v2−0.49625…v+1.13068…≈0
使用牛顿-拉弗森方法找到 v2−0.49625…v+1.13068…=0 的一个解:v∈R无解
v2−0.49625…v+1.13068…=0
牛顿-拉弗森近似法定义
f(v)=v2−0.49625…v+1.13068…
找到 f′(v):2v−0.49625…
dvd(v2−0.49625…v+1.13068…)
使用微分加减法定则: (f±g)′=f′±g′=dvd(v2)−dvd(0.49625…v)+dvd(1.13068…)
dvd(v2)=2v
dvd(v2)
使用幂法则: dxd(xa)=a⋅xa−1=2v2−1
化简=2v
dvd(0.49625…v)=0.49625…
dvd(0.49625…v)
将常数提出: (a⋅f)′=a⋅f′=0.49625…dvdv
使用常见微分定则: dvdv=1=0.49625…⋅1
化简=0.49625…
dvd(1.13068…)=0
dvd(1.13068…)
常数微分: dxd(a)=0=0
=2v−0.49625…+0
化简=2v−0.49625…
令 v0=2计算 vn+1 至 Δvn+1<0.000001
v1=0.81892…:Δv1=1.18107…
f(v0)=22−0.49625…⋅2+1.13068…=4.13818…f′(v0)=2⋅2−0.49625…=3.50374…v1=0.81892…
Δv1=∣0.81892…−2∣=1.18107…Δv1=1.18107…
v2=−0.40298…:Δv2=1.22190…
f(v1)=0.81892…2−0.49625…⋅0.81892…+1.13068…=1.39493…f′(v1)=2⋅0.81892…−0.49625…=1.14160…v2=−0.40298…
Δv2=∣−0.40298…−0.81892…∣=1.22190…Δv2=1.22190…
v3=0.74357…:Δv3=1.14655…
f(v2)=(−0.40298…)2−0.49625…(−0.40298…)+1.13068…=1.49305…f′(v2)=2(−0.40298…)−0.49625…=−1.30221…v3=0.74357…
Δv3=∣0.74357…−(−0.40298…)∣=1.14655…Δv3=1.14655…
v4=−0.58309…:Δv4=1.32666…
f(v3)=0.74357…2−0.49625…⋅0.74357…+1.13068…=1.31458…f′(v3)=2⋅0.74357…−0.49625…=0.99089…v4=−0.58309…
Δv4=∣−0.58309…−0.74357…∣=1.32666…Δv4=1.32666…
v5=0.47562…:Δv5=1.05871…
f(v4)=(−0.58309…)2−0.49625…(−0.58309…)+1.13068…=1.76004…f′(v4)=2(−0.58309…)−0.49625…=−1.66243…v5=0.47562…
Δv5=∣0.47562…−(−0.58309…)∣=1.05871…Δv5=1.05871…
v6=−1.98788…:Δv6=2.46350…
f(v5)=0.47562…2−0.49625…⋅0.47562…+1.13068…=1.12087…f′(v5)=2⋅0.47562…−0.49625…=0.45499…v6=−1.98788…
Δv6=∣−1.98788…−0.47562…∣=2.46350…Δv6=2.46350…
v7=−0.63081…:Δv7=1.35707…
f(v6)=(−1.98788…)2−0.49625…(−1.98788…)+1.13068…=6.06887…f′(v6)=2(−1.98788…)−0.49625…=−4.47202…v7=−0.63081…
Δv7=∣−0.63081…−(−1.98788…)∣=1.35707…Δv7=1.35707…
v8=0.41684…:Δv8=1.04765…
f(v7)=(−0.63081…)2−0.49625…(−0.63081…)+1.13068…=1.84165…f′(v7)=2(−0.63081…)−0.49625…=−1.75787…v8=0.41684…
Δv8=∣0.41684…−(−0.63081…)∣=1.04765…Δv8=1.04765…
v9=−2.83587…:Δv9=3.25272…
f(v8)=0.41684…2−0.49625…⋅0.41684…+1.13068…=1.09758…f′(v8)=2⋅0.41684…−0.49625…=0.33743…v9=−2.83587…
Δv9=∣−2.83587…−0.41684…∣=3.25272…Δv9=3.25272…
无法得出解
解为v≈0.72449…,v≈−1.22074…
v≈0.72449…,v≈−1.22074…
代回 v=u2,求解 u
解 u2=0.72449…:u=0.72449…,u=−0.72449…
u2=0.72449…
对于 x2=f(a) 解为 x=f(a),−f(a)
u=0.72449…,u=−0.72449…
解 u2=−1.22074…:u∈R无解
u2=−1.22074…
x2 在 x内不能为负∈Ru∈R无解
解为
u=0.72449…,u=−0.72449…
u=sin(x)代回sin(x)=0.72449…,sin(x)=−0.72449…
sin(x)=0.72449…,sin(x)=−0.72449…
sin(x)=0.72449…:x=arcsin(0.72449…)+2πn,x=π−arcsin(0.72449…)+2πn
sin(x)=0.72449…
使用反三角函数性质
sin(x)=0.72449…
sin(x)=0.72449…的通解sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(0.72449…)+2πn,x=π−arcsin(0.72449…)+2πn
x=arcsin(0.72449…)+2πn,x=π−arcsin(0.72449…)+2πn
sin(x)=−0.72449…:x=arcsin(−0.72449…)+2πn,x=π+arcsin(0.72449…)+2πn
sin(x)=−0.72449…
使用反三角函数性质
sin(x)=−0.72449…
sin(x)=−0.72449…的通解sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−0.72449…)+2πn,x=π+arcsin(0.72449…)+2πn
x=arcsin(−0.72449…)+2πn,x=π+arcsin(0.72449…)+2πn
合并所有解x=arcsin(0.72449…)+2πn,x=π−arcsin(0.72449…)+2πn,x=arcsin(−0.72449…)+2πn,x=π+arcsin(0.72449…)+2πn
将解代入原方程进行验证
将它们代入 sin4(x)=−cos(x)检验解是否符合
去除与方程不符的解。
检验 arcsin(0.72449…)+2πn的解:假
arcsin(0.72449…)+2πn
代入 n=1arcsin(0.72449…)+2π1
对于 sin4(x)=−cos(x)代入x=arcsin(0.72449…)+2π1sin4(arcsin(0.72449…)+2π1)=−cos(arcsin(0.72449…)+2π1)
整理后得0.52488…=−0.52488…
⇒假
检验 π−arcsin(0.72449…)+2πn的解:真
π−arcsin(0.72449…)+2πn
代入 n=1π−arcsin(0.72449…)+2π1
对于 sin4(x)=−cos(x)代入x=π−arcsin(0.72449…)+2π1sin4(π−arcsin(0.72449…)+2π1)=−cos(π−arcsin(0.72449…)+2π1)
整理后得0.52488…=0.52488…
⇒真
检验 arcsin(−0.72449…)+2πn的解:假
arcsin(−0.72449…)+2πn
代入 n=1arcsin(−0.72449…)+2π1
对于 sin4(x)=−cos(x)代入x=arcsin(−0.72449…)+2π1sin4(arcsin(−0.72449…)+2π1)=−cos(arcsin(−0.72449…)+2π1)
整理后得0.52488…=−0.52488…
⇒假
检验 π+arcsin(0.72449…)+2πn的解:真
π+arcsin(0.72449…)+2πn
代入 n=1π+arcsin(0.72449…)+2π1
对于 sin4(x)=−cos(x)代入x=π+arcsin(0.72449…)+2π1sin4(π+arcsin(0.72449…)+2π1)=−cos(π+arcsin(0.72449…)+2π1)
整理后得0.52488…=0.52488…
⇒真
x=π−arcsin(0.72449…)+2πn,x=π+arcsin(0.72449…)+2πn
以小数形式表示解x=π−1.01821…+2πn,x=π+1.01821…+2πn