解答
dzdtd2(2z(t)−4t+1(x(z,t)−1)z(t))
解答
(2zt−4t+1)3(2z2t2dtd(dzd(x(z,t)))−4t2dtd(x(z,t))−4zt2dtd(dzd(x(z,t)))+8t+tdtd(x(z,t))+ztdtd(dzd(x(z,t)))+4z2tdzd(x(z,t))−8tx(z,t)−8ztdzd(x(z,t))+x(z,t)+zdzd(x(z,t))−1)(2zt−4t+1)−4t(z−2)(4t+2z2tdzd(x(z,t))−4tx(z,t)−4ztdzd(x(z,t))+x(z,t)+zdzd(x(z,t))−1)
求解步骤
dzdtd2(2z(t)−4t+1(x(z,t)−1)z(t))
dzd(2zt−4t+1(x(z,t)−1)zt)=(2zt−4t+1)2t(2z2tdzd(x(z,t))−4ztdzd(x(z,t))−4tx(z,t)+4t+zdzd(x(z,t))+x(z,t)−1)
=dtd((2zt−4t+1)2t(2z2tdzd(x(z,t))−4ztdzd(x(z,t))−4tx(z,t)+4t+zdzd(x(z,t))+x(z,t)−1))
dtd((2zt−4t+1)2t(2z2tdzd(x(z,t))−4ztdzd(x(z,t))−4tx(z,t)+4t+zdzd(x(z,t))+x(z,t)−1))=(2zt−4t+1)3(2z2t2dtd(dzd(x(z,t)))−4t2dtd(x(z,t))−4zt2dtd(dzd(x(z,t)))+8t+tdtd(x(z,t))+ztdtd(dzd(x(z,t)))+4z2tdzd(x(z,t))−8tx(z,t)−8ztdzd(x(z,t))+x(z,t)+zdzd(x(z,t))−1)(2zt−4t+1)−4t(z−2)(4t+2z2tdzd(x(z,t))−4tx(z,t)−4ztdzd(x(z,t))+x(z,t)+zdzd(x(z,t))−1)
=(2zt−4t+1)3(2z2t2dtd(dzd(x(z,t)))−4t2dtd(x(z,t))−4zt2dtd(dzd(x(z,t)))+8t+tdtd(x(z,t))+ztdtd(dzd(x(z,t)))+4z2tdzd(x(z,t))−8tx(z,t)−8ztdzd(x(z,t))+x(z,t)+zdzd(x(z,t))−1)(2zt−4t+1)−4t(z−2)(4t+2z2tdzd(x(z,t))−4tx(z,t)−4ztdzd(x(z,t))+x(z,t)+zdzd(x(z,t))−1)